Background Diabetes, a cardiometabolic condition with social and health ramifications, is already a global epidemic. Diabetes affects 422 million people worldwide, with the majority living in middle- and low-income countries, resulting in 1.5 million deaths each year. Inhibiting DPP-IV, an enzyme whose main biological function in diabetes is the breakdown of metabolic hormones like GLP-1, Quassia amara, a plant that contains numerous phytochemicals, has been claimed to be used as a traditional treatment for a variety of metabolic illnesses, as well as having anti-malaria, anti-biotic, anti-diabetes, and anti-anemic characteristics. This work investigated the in-silico inhibitory ability of phytochemicals obtained from Quassia amara against a diabetes-related enzyme, DPP-IV, with the aim of confirming the drug-like potential of ligands from the plant (Quassia amara) in comparison with the standard drug, Alogliptin. Result As a result of the investigation, five compounds (Vitexin, Quassimarin, Simalikalactone D, Brucein D, and Quassinol) obtained docking scores ranging from − 7.47 to − 6.49 kcal/mol. Conclusion Many medications have been offered, but the typical side effects have prompted researchers to look for new herbal plants which can be used as permanent treatment with minute side effects. Thus, utilizing computational studies such as molecular docking, molecular mechanics generalized born surface area (MM-GBSA) and the lead compounds' ADMETox characteristics were computed.
Conclusions: Flavonoids from B. sapida may serve as promising inhibitors of ERK5 for breast cancer management. Background: Breast cancer is a global public health issue that can be caused by environmental or hereditary factors. There are still a shortage of effective treatments with enhanced efficacy and acceptability against the disease, as many breast cancer drugs have serious side effects. Hence, the inhibitory potential of flavonoids from Blighia sapida against breast cancer target (ERK5) was investigated. The interactions of the target protein and its co-crystallized ligand were used to develop a protein-ligand based pharmacophore hypothesis. The idea was applied to the screening of phytochemicals obtained from an online database. Following that, we used structural bioinformatics and theoretical chemistry tools to find new ERK5 inhibitors using molecular docking, molecular mechanics generalized Born surface area (MM-GBSA) and pharmacokinetics model in Schrödinger suite, density functional theory analysis (DFT) was also performed using Spartan 10. Results: The technique discovered new lead molecules as inhibitors of ERK5 as breast cancer therapy through molecular docking and MM/GBSA calculation with Quercetin, Kaempferol and (+)-Catechin showing higher docking score than the co-cystalized ligand and the standard drug. In the phase-generated E-pharmacophore theory, the postulated pharmacophore hypothesis has a hydrogen bond acceptor, hydrogen bond donor, and aromatic ring. Interestingly, all the hits obeyed Lipinski rule of five. The results of the frontier molecular orbitals revealed that the EHOMO values of the hit compounds range from -6.02 to -5.48 eV indicating that all the hit compounds will readily donate electron. Conclusions: Flavonoids from B. sapida may serve as promising inhibitors of ERK5 for breast cancer management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.