Chronic kidney disease (CKD), defined as reduced glomerular filtration rate, is increasingly becoming a major public health issue. At the histological level, renal fibrosis is the final common pathway leading to end-stage renal disease, irrespective of the initial injury. According to this view, antifibrotic agents should slow or halt the progression of CKD. However, due to multiple overlapping pathways stimulating fibrosis, it has been difficult to develop antifibrotic drugs that delay or reverse the progression of CKD. MicroRNAs (miRNAs) are small noncoding RNA molecules, 18-22 nucleotides in length, that control many developmental and cellular processes as posttranscriptional regulators of gene expression. Emerging evidence suggests that miRNAs targeted against genes involved in renal fibrosis might be potential candidates for the development of antifibrotic therapies for CKD. This review will discuss some of the miRNAs, such as Let-7, miR-21,-29, -192, -200,-324, -132, -212, -30, -126, -433, -214, and -199a, that are implicated in renal fibrosis and the potential to exploit these molecular targets for the treatment of CKD.
Using perfusion fixation of the middle cerebral artery (MCA) in calcium-free solution at physiological pressure and systematically randomly sampling the sections prepared from the same M2 segments of MCA, we found that there are structural differences that are associated with altered cerebral blood flow (CBF) autoregulation but not neurovascular coupling and cognition in young, healthy Sprague-Dawley (SD) rats. Understanding the intrinsic differences in cerebrovascular structure and function in males and females is essential to develop new pharmaceutical treatments for cerebrovascular disease (CVD).
20-HETE is a potent vasoconstrictor that is implicated in the regulation of blood pressure, cerebral blood flow and neuronal death following ischemia. Numerous human genetic studies have shown that inactivating variants in the cytochrome P450 enzymes that produce 20-HETE are associated with hypertension, stroke and cerebrovascular disease. However, little is known about the expression and cellular distribution of the cytochrome P450A enzymes (CYP4A) that produce 20-HETE or the newly discovered 20-HETE receptor (GPR75) in the brain. The present study examined the cell types and regions in the rat forebrain that express CYP4A and GPR75. Brain tissue slices from Sprague Dawley (SD), Dahl Salt-Sensitive (SS) and CYP4A1 transgenic rat strains, as well as cultured human cerebral pericytes and cerebral vascular smooth muscle cells, were analyzed by fluorescent immunostaining. Tissue homogenates from these strains and cultured cells were examined by Western blot. In the cerebral vasculature, CYP4A and GPR75 were expressed in endothelial cells, vascular smooth muscle cells and the glial limiting membrane of pial arteries and penetrating arterioles but not in the endothelium of capillaries. CYP4A, but not GPR75, was expressed in astrocytes. CYP4A and GPR75 were both expressed in a subpopulation of pericytes on capillaries. The diameters of capillaries were significantly decreased at the sites of first and second-order pericytes that expressed CYP4A. Capillary diameters were unaffected at the sites of other pericytes that did not express CYP4A. These findings implicate 20-HETE as a paracrine mediator in various components of the neurovascular unit and are consistent with 20-HETE's emerging role in the regulation of cerebral blood flow, blood-brain barrier integrity, the pathogenesis of stroke and the vascular contributions to cognitive impairment and dementia. Moreover, this study highlights GPR75 as a potential therapeutic target for the treatment of these devastating conditions.
This study describes a modified technique to fill the renal vasculature with a silicon rubber (Microfil) compound and obtain morphologic information about the intrarenal distribution of capillary blood flow under a variety of conditions. Kidneys and cremaster muscles of rats were perfused in vivo with Microfil using a perfusion pressure equal to the animal's mean arterial pressure at body temperature. Microfil did not alter arteriolar diameter or the pattern of flow in the microcirculation of the cremaster muscle. The modified protocol reproducibly filled the renal vasculature, including; glomerular, peritubular, and vasa recta capillaries. We compared the filling of the renal circulation in control rats with that seen in animals subjected to maneuvers reported to alter the intrarenal distribution of blood flow. Infusion of angiotensin II , hypotension, volume expansion, and mannitol‐ or furosemide‐induced diuresis redistributed flow between renal cortical and medullary capillaries. The advantage of the current technique is that it provides anatomical information regarding the number, diameter, and branching patterns of capillaries in the postglomerular circulation critical in determining the intrarenal distribution of cortical and medullary blood flow.
The accumulation of extracellular amyloid-β (Aβ) and intracellular hyperphosphorylated τ proteins in the brain are the hallmarks of Alzheimer’s disease (AD). Much of the research into the pathogenesis of AD has focused on the amyloid or τ hypothesis. These hypotheses propose that Aβ or τ aggregation is the inciting event in AD that leads to downstream neurodegeneration, inflammation, brain atrophy and cognitive impairment. Multiple drugs have been developed and are effective in preventing the accumulation and/or clearing of Aβ or τ proteins. However, clinical trials examining these therapeutic agents have failed to show efficacy in preventing or slowing the progression of the disease. Thus, there is a need for fresh perspectives and the evaluation of alternative therapeutic targets in this field. Epidemiology studies have revealed significant overlap between cardiovascular and cerebrovascular risk factors such as hypertension, diabetes, atherosclerosis and stroke to the development of cognitive impairment. This strong correlation has given birth to a renewed focus on vascular contributions to AD and related dementias. However, few genes and mechanisms have been identified. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that plays a complex role in hypertension, autoregulation of cerebral blood flow and blood–brain barrier (BBB) integrity. Multiple human genome-wide association studies have linked mutations in the cytochrome P450 (CYP) 4A (CYP4A) genes that produce 20-HETE to hypertension and stroke. Most recently, genetic variants in the enzymes that produce 20-HETE have also been linked to AD in human population studies. This review examines the emerging role of 20-HETE in AD and related dementias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.