In this paper, block method was developed using method of collocation and interpolation of power series as approximate solution to give a system of non linear equations which is solved to give a continuous hybrid linear multistep method. The continuous hybrid linear multistep method is solved for the independent solutions to give a continuous hybrid block method which is then evaluated at some selected grid points to give a discrete block method. The basic properties of the discrete block method were investigated and found to be zero stable, consistent and convergent. The derived scheme was tested on some numerical examples and was found to give better approximation than the existing method.
In recent times, numerical approximation of 3rd-order boundary value problems (BVPs) has attracted great attention due to its wide applications in solving problems arising from sciences and engineering. Hence, A higher-order block method is constructed for the direct solution of 3rd-order linear and non-linear BVPs. The approach of interpolation and collocation is adopted in the derivation. Power series approximate solution is interpolated at the points required to suitably handle both linear and non-linear third-order BVPs while the collocation was done at all the multiderivative points. The three sets of discrete schemes together with their first, and second derivatives formed the required higher-order block method (HBM) which is applied to standard third-order BVPs. The HBM is self-starting since it doesn’t need any separate predictor or starting values. The investigation of the convergence analysis of the HBM is completely examined and discussed. The improving tactics are fully considered and discussed which resulted in better performance of the HBM. Three numerical examples were presented to show the performance and the strength of the HBM over other numerical methods. The comparison of the HBM errors and other existing work in the literature was also shown in curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.