We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature.We also discuss two intensity magnifications, that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here callμ, and the other adapted to cosmological discussions in terms of the redshift, that we call µ . We show that the natural intensity magnificationμ coincides with the standard angular magnification (µ).
We report and analyse a serendipitous finding of foregrounds in the cosmic microwave background (CMB) radiation associated to extended galactic halos. Using the cross correlation of Planck and WMAP maps and the 2MRS galaxy catalogue, we find that the mean temperature radial profiles around nearby galaxies at $cz\le 4500~\rm {km~s^{-1}}$ show a statistically significant systematic decrease of $\sim 15~\mu \rm {K}$ extending up to several galaxy radii. This deficit in the temperature strongly depends on the galaxy morphological type at scales within several tens of times the galaxy size, becoming nearly independent of galaxy morphology at larger scales. The effect is significantly stronger for the more extended galaxies, with galaxy clustering having a large impact on the results. Our findings indicate the presence of statistically relevant foregrounds in the CMB maps that should be considered in detailed cosmological studies. Besides, we argue that these can be used to explore the intergalactic medium surrounding bright late-type galaxies and allow for diverse astrophysical analyses.
We study simulated images generated from an accretion disk surrounding the supermassive black hole hosted in the nearby galaxy M87. We approach the problem employing very simple accreting models inspired from magnetohydrodynamical simulations and introducing a new recipe for dealing with the combined integration of the geodesic and geodesic deviation equations in Kerr spacetime, which allows for a convenient and efficient way to manage the system of equations. The geometry of the basic emission model is given by a two temperature thin disk in the equatorial plane of the black hole supplemented by an asymmetric bar structure. We show that this configuration permits to generate the most salient features appearing in the EHT Collaboration images of M87 with impressive fidelity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.