Resumen La aplicación de modelos de crecimiento para árboles individuales en bosques mezclados permite realizar estimaciones a nivel de la unidad de manejo. El objetivo del presente estudio fue evaluar los modelos de crecimiento en diámetro normal, área basal, altura total y volumen fustal de Chapman-Richards, Schumacher, Hossfeld I y Weibull para árboles individuales de Pinus pseudostrobus y Pinus oocarpa de Guerrero, México. Mediante muestreo selectivo se recolectaron 27 árboles dominantes y 28 codominantes para reconstruir los perfiles de árboles ordenados en grupos de diez años, por medio de la técnica de análisis troncales. La selección de los mejores modelos para cada variable se realizó con base en el coeficiente de determinación ajustado, la raíz del error medio cuadrático, las propiedades de los parámetros y las tendencias lógicas de crecimiento. Los resultados indican que el modelo de Schumacher fue el mejor para estimar el crecimiento en diámetro normal y la altura en ambas especies, así como el área basal de Pinus pseudostrobus y el volumen de Pinus oocarpa; mientras que, el modelo de Chapman-Richards fue el mejor para estimar el área basal de Pinus oocarpa y el volumen para Pinus pseudostrobus. Las edades estimadas del turno para volumen en Pinus oocarpa fueron de 62 años y para Pinus pseudostrobus de 82 años.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.