Nonsteroidal anti-inflammatory (NSAI) drugs are the most commonly used group of drugs today. Increase in the use of standard NSAI for treating pain and inflammation was restricted by the fact that these drugs were proven to possibly cause gastrointestinal and renal toxicity. Meloxicam is a NSAI that has anti-inflammatory, analgesic, and antipyretic effects. This study aims to investigate the effects of meloxicam on stomach, kidney, and liver of rats under light microscopy level. Based on the light microscopic observations, mononuclear cell infiltration and pseudolobular formation was established in liver samples of animals in the experimental group. Metaplasia in surface and glandular epithelia and atrophy were observed in stomach samples. Glomerular stasis-related hypertrophy and focal interstitial nephritis were found in kidneys. It was concluded in this study that meloxicam might cause hepatotoxicity, nephrotoxicity, and gastric metaplasia in rats at a used dose and duration.
Our study focuses on characterization of dorsal root ganglion (DRG) neurons cultured on silicon micro-pillar substrates (MPS) with the ultimate goal of designing micro-electrode arrays (MEAs) for successful electrophysiological recordings of DRG neurons. Adult and neonatal DRG neurons were cultured on MPS and glass coverslips for 7 days in vitro. DRG neuronal distribution and morphometric analysis, including neurite alignment and length, was performed on MPS areas with different pillar width and spacing. We showed that MPS provide an environment for growth of adult and neonatal DRG neurons as permissive as control glass surfaces. Neonatal DRG neurons were present on MPS areas with narrow pillar spacing, while adult neurons preferred wider pillar spacing. Compared to the control glass surfaces the neonatal and adult DRG neurons in regions with narrow pillar spacing range developed a smaller number of longer neurites. In the same area, neurites were preferentially oriented along three directional axes at 30°, 90° and 150°. MPS architecture influenced growth directionality of all main DRG neuronal subtypes. We can conclude that specific micro-pillar substrate topography affects the morphology of DRG neurons. This knowledge can enable development of MEAs with precisely defined physical features for various neuroscience applications.
Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.
Genistein was shown to promote recovery in experimental peripheral neuropathy and chronic peripheral nerve injury (23,24). However, the effect of genistein in animal models of acute crush injury or complete transection of peripheral nerve has not yet been investigated.The purpose of this study was to investigate the effects of genistein after experimental sciatic nerve crush injury and complete sciatic nerve transection in rats and to compare its effects with those of gabapentin. █ INTRODUCTIONA lthough microsurgical techniques have been developed and positive effects of clinically and experimentally different neurotrophic drugs, steroids, hormones, and even low-dose radiation have been reported, desirable motor and sensory recovery after peripheral nerve injury is a clinical challenge (6,16,18,20,25). Methylprednisolone and gabapentin are considered as reference agents, against which the medical treatment of traumatic peripheral nerve injury is evaluated. However, their adverse effects are a major limitation associated with their clinical use (16). AIM:To investigate the effects of genistein in a rat model of sciatic nerve crush injury and complete sciatic nerve transection. The effects of genistein were compared with those of gabapentin, which is widely used in clinical practice for peripheral nerve injury. MATERIAL and METHODS:Forty-eight rats were randomly divided into six groups (8 rats in each group): group 1 (sham); group 2, sciatic nerve crush injury (control); group 3, sciatic nerve crush injury+genistein 20 mg/kg; group 4, sciatic nerve crush injury+gabapentin 90 mg/kg; group 5, sciatic nerve transection+genistein 20 mg/kg; group 6, sciatic nerve transection+gabapentin 90 mg/kg. The effects of genistein and gabapentin were assessed with immunohistochemical staining for growth associated protein-43 (GAP-43) and myelin basic protein (MBP). Interleukin-1β and tumor necrosis factor α levels in the injured nerve specimens were assessed as a measure of inflammatory response; walking track analysis and sciatic function index for neurological recovery and the paw mechanical withdrawal threshold were examined for neuropathic pain. RESULTS:On histopathological examination, genistein use was associated with a greater immunoreactivity for GAP-43 and MBP compared with that associated with gabapentin. Genistein and gabapentin had similar effects on anti-inflammatory activity, functional recovery, and neuropathic pain. CONCLUSION:Genistein and gabapentin exhibit positive effects on histopathology, inflammation, and clinical findings of peripheral nerve injury. When the systemic side effects of gabapentin are considered, genistein (a basic soy isoflavone that has no side effects) can be used as an alternative to medical treatment in peripheral nerve injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.