The detection and classification of power quality events that disturb the voltage and/or current waveforms in the electrical power distribution networks is very important to generate electrical energy and to deliver this energy to the end-user equipment at an acceptable voltage. Various property extraction methods are used to determine the type of disturbances in the electrical signal. In this study, seven power distortions including voltage sag, voltage swell, voltage harmonics, voltage sag with harmonics, voltage swell with harmonics, flicker, transient signals and pure sine as a reference signal is used. Synthetic data are produced in MATLAB using parametric equations based on TS EN 50160 standard. Four kinds of feature extraction as frequency-amplitude, time-amplitude, geometric mean and standard deviation is made with Stockwell Transform (ST), which is one of the methods used for the feature extraction of the determined GKB. Detection of voltage distortions is interpreted through these properties. 640 simulation data is entered into the classifier by using Support Vector Machines (SVM) and Artificial Neural Networks (ANN) and their classification performance is compared.
This paper presents an effective method for detection and classification of Power Quality Events (PQE), based on Fast Fourier Transformation (FFT) for event identification and Artificial Neural Network (ANN) technique for classifying of these events. Firstly, synthetic data such as pure sine as a reference, voltage sag, voltage swell, flicker, transient, voltage with harmonics are created in MATLAB based on TS EN 50160 standard. Database with 480 PQE waveforms is generated with 80 samples for each of the 6 types of the waveform with randomly different event amplitude, beginning occurrence time, time duration, frequency component and angle according to a type of event. FFT is used to extract features of the events by decomposing the signal. Then, 16384×480 data are reduced to 480×480 data by applying Principal Component Analysis (PCA) that is prevent over-learning, obtain less runtime using less computing power and reduce data and storage space. Finally, a total of 480 PQE are classified by using ANN. 336 of these PQE are used for training cluster, 72 of PQE are used for verification and the remaining 72 are used for testing. Firstly, the ANN has been trained correctly. The classification performance of the ANN in PQE has been examined by inserting the test into ANN. The performance of ANN is 99.8% for these PQE. The purpose of this research is to provide an artificial intelligence assistant that can fast and accurately advise the power system operators for the networks, and the results also show that the goal has been achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.