Two of the main obstacles to the development of epiretinal prosthesis technology are electrodes that require current amplitudes above safety limits to reliably elicit percepts, and a failure to consistently elicit pattern vision. Here, we explored the causes of high current amplitude thresholds and poor spatial resolution within the Argus II epiretinal implant. We measured current amplitude thresholds and two-point discrimination (the ability to determine whether one or two electrodes had been stimulated) in 3 blind participants implanted with Argus II devices. Our data and simulations show that axonal stimulation, lift and retinal damage all play a role in reducing performance in the Argus 2, by either limiting sensitivity and/or reducing spatial resolution. Understanding the relative role of these various factors will be critical for developing and surgically implanting devices that can successfully subserve pattern vision.
Image motion contains potential cues about the material properties of objects. In earlier work, we proposed motion cues that could predict whether a moving object would be perceived as shiny or matte. However, whether the visual system uses these cues is still uncertain. Herein, we use the tracking of eye movements as a tool to understand what visual information observers use when engaged in material perception. Observers judged either the gloss or the speed of moving blobby shapes in an eye tracking experiment. Results indicate that during glossiness judgments, participants tend to look at gloss-diagnostic dynamic features more than during speed judgments. This suggests a fine tuning of the visual system to properties of moving stimuli: Task relevant information is actively singled out and processed in a dynamically changing environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.