Objective: This study presents an efficient procedure that provides an accurate classification of Electroencephalogram (EEG) signals for the detection of epileptic seizure. Essentially, the proposed procedure hybridizes the linear and nonlinear classifiers with the discrete wavelet transforms (DWT) and principal component analysis (PCA), separately. Material and Methods: To classify EEG signals more accurately, the proposed multi-resolution signal processing technique splits them into the detailed partitions with different window-widths, and then decomposes them into detail and approximation coefficients by means of DWT. Thus, many specific latent features that characterize the nonlinear and dynamical structures in the signals can be evaluated from these coefficients. During the model estimation process with multivariate logistic regression (MLR) and artificial neural networks (ANNs), to control the complexity of model and reduce the dimension of feature matrix, PCA is used. In addition, to quantify the complexity and select the best models, the information criteria are considered for both MLR and ANNs. To improve the classification performance, ANNs are trained by various gradient algorithms as well as considering early stopping and cross-validation techniques. Results: According to analysis results over the benchmark epilepsy data set released by the Department of Epileptology at University of Bonn, the proposed approach is to bring out 99% accuracy ratios for classifying the epileptic signals. Conclusion: This approach not only allows making an efficient analysis of EEG signals for detection of epilepsy, but also provides the best model configurations for ANNs and MLR in terms of reliability and complexity.Keywords: EEG signal processing; epileptic seizures; discrete wavelet transform; artificial neural networks; multinomial logistic regression; principal component analysis ÖZET Amaç: Bu çalışma, epileptik nöbetlerin tesbiti için Elektroensefalogram (EEG) sinyallerini doğru sınıflandıran etkin bir yöntem önermektedir. Esas olarak, bu yöntem lineer ve lineer olmayan sınıflandırıcıları, ayrık dalgacık dönüşümleri (ADD) ve temel bileşenler analizi (TBA) ile hibritleştirmektedir. Gereç ve Yöntemler: Önerilen çoklu-çözünürlüklü sinyal işleme tekniği, EEG sinyallerinin daha doğru sınıflandırılmak için onları farklı bant genişlikli parçalara bölmekte ve bu parçaları ADD yardımıyla ayrıntı (detail) ve yaklaşım (approximate) katsayılarına ayrıştırmaktadır. Böylece, sinyallerin barındırdığı dinamik ve lineer olmayan yapıları karaterize eden birçok gizli özellik, bu katsayılar üzerinden belirlenmektedir. Çokterimli Logistik Regregresyon (ÇLR) ve Yapay Sinir Ağlarıyla (YSA) model kestirim sürecinde, karmaşıklığı kontrol etmek ve veri matrisini indirgemek için TBA kullanılmıştır. Bunun yanısıra, model karmaşıklığının nicelendirilmesi ve en iyi modellerin belirlenmesi için bilgi kriterlerinden yararlanılmıştır. Doğru sınıflandırma performasını arttırmak için YSA'lar erken durdurma ve çapraz geçerlilik teknikleriyle beraber ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.