Abstract. Ultra-thin metamaterials, called meta-surfaces or meta-sheets, open up new opportunities in designing microwave radomes, including an improved transmission over a broader range of antenna scan angles, tailorable and reconfigurable frequency bands, polarization transformations, one-way transmission and switching ability. The smallness of the unit cells combined with the large electrical size of microwave radomes significantly complicates full-wave numerical simulations as a very fine sampling over an electrically large area is required. Physical optics (PO) can be used to approximately describe transmission through the radome in terms of the homogenized transmission coefficient of the radome wall. This paper presents the results of numerical simulations of electromagnetic transmission through planar meta-sheets (infinite and circularly shaped) obtained by using a full-wave electromagnetic field simulator and a PObased solution.
A radome is an integral part of almost every antenna system, protecting antennas and antenna electronics from hostile exterior conditions (humidity, heat, cold, etc.) and nearby personnel from rotating mechanical parts of antennas and streamlining antennas to reduce aerodynamic drag and to conceal antennas from public view. Metamaterials are artificial materials with a great potential for antenna design, and many studies explore applications of metamaterials to antennas but just a few to the design of radomes. This paper discusses the possibilities that metamaterials open up in the design of microwave radomes and introduces the concept of metaradomes. The use of metamaterials can improve or correct characteristics (gain, directivity, and bandwidth) of the enclosed antenna and add new features, like band-pass frequency behavior, polarization transformations, the ability to be switched on/off, and so forth. Examples of applications of metamaterials in the design of microwave radomes available in the literature as well as potential applications, advantages, drawbacks, and still open problems are described.
Metasheets are ultra-thin sheets built from sub-wavelength resonators designed in order to achieve certain frequency-dependent transmission behaviour. A semi-analytical approach based on an equivalent circuit representation is proposed to calculate the microwave transmission through metasheets which consist of 2D periodic arrays of planar circular metal rings with and without substrate. The electromagnetic response of the metasheet can be controlled by changing the radius and periodicity of the circular rings. In the semi-analytical approach, the equations for impedances of the equivalent circuit are parameterized and fitted to match the values of transmission coefficients obtained by full-wave simulations at selected frequency points. Such an approach permits an optimization of the metasheet design with a very small number of full-wave numerical simulations. It is shown that the results of the semi-analytical approach match well with full-wave simulations and measurements within a reasonable range of radius and periodicity values.
Metasheets are ultra-thin sheets built from sub-wavelength resonators designed to achieve certain frequency-dependent transmission behavior. A semianalytical approach based on an equivalent circuit representation is proposed to calculate the microwave transmission through metasheets consisting of two-dimensional periodic arrays of planar circular metal rings on a dielectric substrate. In the semianalytical approach, the impedances of the equivalent circuit are parameterized and fitted to match the values of transmission coefficients obtained by full-wave simulations at selected frequency points. As dimensional parameters, the outer radius and width of the ring are considered. A metalens with four concentric zones is designed by using this semianalytical approach to correct the phase distortions due to a polypropylene hemispheric radome at frequencies around 28 GHz in the Ka band. It is shown that the designed metalens works well for 27 GHz, 28 GHz, 29 GHz, and 29.5 GHz, implying the bandwidth of approximately 2.5 GHz. The field transmitted through the metalens and the radome is calculated by Physical Optics (PO). The electrically large integration area is divided into small square facets to calculate the PO integral. The calculated and measured results are shown to agree well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.