<p>The Pontide Upper Cretaceous magmatic arc can be traced for over 1000 km along the southern Black Sea coast from Georgia to Bulgaria. &#160;The arc extrusive sequence is well-exposed in the &#304;&#287;neada region in Thrace close to the Bulgarian border. The Upper Cretaceous sequence in &#304;&#287;neada region overlies the schists and phyllites of Strandja Massif with an unconformity. It &#160;has a thickness of over 700 meters and consists at the base of Cenomanian shallow marine sandy limestone, which pass up into pelagic limestone, marn and volcanogenic siltstone with Turonian planktonic foraminifera, including <em>Marginotruncana pseudolinneana</em>, <em>Marginotruncana marginata</em>, <em>Whitenella</em> sp., <em>Whitenella praehelvetica</em>, <em>Muricohedbergella</em> sp.&#160; This indicates that the arc volcanism in the region started in the Turonian. The pelagic limestone, marl, and calcareous siltstone series passes up into a volcanic-volcaniclastic sequence of andesitic tuff, lapillistone, agglomerate, andesitic and basaltic-andesitic lava flows. The volcaniclastic rocks are intercalated with lava flows and with rare pelagic limestone and shale beds. Although it is disrupted by several faults, the volcanic sequence can be traced from older to younger along the coast of &#304;&#287;neada. The sequence starts with andesitic volcaniclastic rocks and lava flows, and changes to basaltic-andesitic and then, again to andesitic rocks. The ocean floor alteration, which is found in all volcaniclastic and volcanic rock samples, and the intercalated pelagic limestones show that the rocks were deposited in deep submarine conditions in an intra-arc to fore-arc environment. Campanian (80.6 &#177;1.5 Ma) U-Pb zircon ages, which are obtained from the andesitic tuffs at the base of the volcanic-volcaniclastic sequence, indicate a continued magmatism from Turonian to Campanian.</p>
<p>The Upper Cretaceous volcanic and volcaniclastic rocks crop out along the Black Sea coastline in Turkey. They are part of a magmatic arc that formed as a result of northward subduction of the Tethys ocean beneath the southern margin of Laurasia. The lower part of the Upper Cretaceous volcanism in the Kefken region, 100 km northeast of Istanbul, is represented by basaltic andesites, andesites, agglomerates and tuffs, which have yielded Late Cretaceous (Campanian, ca. 83 Ma) U-Pb zircon ages. The volcanic and volcanoclastic rocks are stratigraphically overlain by shallow to deep marine limestones, which range in age from Late Campanian to Early Eocene.&#160; Geochemically, basaltic andesites and andesites display negative anomalies in Nb, Ta and Ti, enrichment in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). Light rare earth elements (LREE) show slightly enrichment relative to heavy rare earth elements (La<sub>cn</sub>/Yb<sub>cn</sub> =2.51-3.63) and there are slight negative Eu anomalies (Eu/Eu* = 0.71-0.95) in basaltic andesite and andesite samples. The geochemical data indicate that Campanian volcanic rocks were derived from the partial melting of the mantle wedge induced by hydrous fluids released by dehydration of the subducted oceanic slab.</p><p>There is also a horizon of volcanic rocks, about 230 m thick, within the Late Campanian-Early Eocene limestone sequence.&#160; This volcanic horizon, which consists of pillow basalts, porphyritic basalts,&#160; andesites and dacites, is of Maastrichtian age based on paleontological data from the intra-pillow sediments and U-Pb zircon ages from the andesites and dacites (72-68 Ma).&#160; The Maastrichtian andesites and dacites are geochemically distinct from the Campanian volcanic rocks. They show distinct adakite-like geochemical signatures with high ratios of Sr/Y (>85.5), high La<sub>cn</sub>/Yb<sub>cn </sub>(16.4-23.7) ratios, low content of Y (7.4-8.6 ppm) and low content of heavy rare-earth elements (HREE). The adakitic rocks most probably formed as a result of partial melting of the subducting oceanic slab under garnet and amphibole stable conditions.</p><p>The Upper Cretaceous arc sequence in the Kefken region shows a change from typical subduction-related magmas to adakitic ones, accompanied by decrease in the volcanism.</p><p>&#160;</p><p>&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.