Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Photochemically processed urban emissions were characterized at a mountain top location, free from local sources, within the Mexico City Metropolitan Area. Analysis of the Mexico City emission plume demonstrates a strong correlation between secondary organic aerosol and odd oxygen (O3 + NO2). The measured oxygenated‐organic aerosol correlates with odd oxygen measurements with an apparent slope of (104–180) μg m−3 ppmv−1 (STP) and r2 > 0.9. The dependence of the observed proportionality on the gas‐phase hydrocarbon profile is discussed. The observationally‐based correlation between oxygenated organic aerosol mass and odd oxygen may provide insight into poorly understood secondary organic aerosol production mechanisms by leveraging knowledge of gas‐phase ozone production chemistry. These results suggest that global and regional models may be able to use the observed proportionality to estimate SOA as a co‐product of modeled O3 production until more complete models of SOA formation become available.
The characterization of volatile and nonvolatile particle materials present in gas turbine exhaust is critical for accurate estimation of the potential impacts of airport activities on local air quality, atmospheric processes, and climate change. Two field campaigns were performed to collect an extensive set of particle and gaseous emission data for on-wing gas turbine engines. The tests included CFM56, RB211-535E4-B, AE3007, PW4158, and CJ610 engines, providing the opportunity to compare emissions from a wide range of engine technologies. Here we report mass, number, composition, and size data for the nonvolatile (soot) and volatile particles present in engine exhaust. For all engines, soot emissions (EIm-soot) are greater at climbout (85% power) and takeoff (100%) power than idle (4% or 7%) and approach (30%). At the engine exit plane, soot is the only type of particle detected. For exhaust sampled downwind (15–50 m) and diluted by ambient air, total particle number emissions (EIn-total) increases by about one or two orders of magnitude relative to the engine exit plane, and the increase is driven by volatile particles that have freshly nucleated in the cooling exhaust gas both in the free atmosphere and in the extractive sample lines. Fuel sulfur content is the determining factor for nucleation of new particles in the cooling exhaust gases. Compositional analysis indicates that the volatile particles consist of sulfate and organic materials (EIm-sulfate and EIm-organic). We estimate a lower bound S[IV] to S[VI] conversion efficiency of (0.08±0.01)%, independent of engine technology. Measurements of EIm-organic ranged from about 0.1 mg kg−1 to 40 mg kg−1. Lubrication oil was present in particles emitted by all engines and accounted for over 90% of the particulate organic mass under some conditions. The products of incomplete combustion are a likely source of the remaining volatile organic particle material.
Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.