For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally f lat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration-rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-f ledged mineral commodities, the use of which promise to expand even more in the future.The discovery of natural zeolites 40 years ago as large, widespread, mineable, near-monomineralic deposits in tuffaceous sedimentary rocks in the western United States and other countries opened another chapter in the book of useful industrial minerals whose exciting surface and structural properties have been exploited in industrial, agricultural, environmental, and biological technology. Like talc, diatomite, wollastonite, chrysotile, vermiculite, and bentonite, zeolite minerals possess attractive adsorption, cation-exchange, dehydration-rehydration, and catalysis properties, which contribute directly to their use in pozzolanic cement; as lightweight aggregates; in the drying of acid-gases; in the separation of oxygen from air; in the removal of NH 3 from drinking water and municipal wastewater; in the extraction of Cs and Sr from nuclear wastes and the mitigation of radioactive fallout; as dietary supplements to improve animal production; as soil amendments to improve cation-exchange capacities (CEC) and water sorption capacities; as soilless zeopon...
77843. 2The authors are greatly indebted to numerous individuals who have provided unpublished information of their research in animal science and aquaculture, including G.
Abstract--In the nearly 2000 occurrences of zeolites in sedimentary rocks of volcanic origin about 15 zeolite minerals have been identified. The mode of occurrence of six of these, clinoptilolite, erionite, chabazite, phillipsite, analcime, and mordenite, is described, and their morphology is illustrated with scanning electron micrographs.
Al~traet--Since 1960 asbestos production of the United States has more than tripled, a phenomenon due in large part to the development of the Coalinga asbestos deposit in western California, Although most asbestos ores contain 5-10 per cent chrysotile in the form of cross-or slip-fiber veins within massive serpentinite bodies, no such veins are to be found in the Coalinga deposit despite the fact that it contains more than 50 per cent recoverable chrysotile. The Coalinga ore consists of soft, powdery, pellet-like agglomerates of finely matted chrysotile surrounding blocks and fragments of serpentinite rock. The highly sheared and pulverized nature of the ore favors its exploitation by simple, open-pit mining, and high quality products can be prepared by either wet or dry milling processes.Four types of serpentine material are distinguishable: (1) hard, dense blocks of serpentinite rock, ranging from fractions of an inch to several tens of feet in diameter; (2) tough, leathery sheets, resembling mountain leather, up to several square feet in size; (3) brittle blades and plates of green serpentine, a few square inches in size; and (4) friable agglomerates of soft, powdery chrysotile containing appreciable amounts of the other three. Chrysotile is the principal component of all the above materials, with the exception of the serpentinite rock which consists mainly of lizardite and/or antigorite, with small amounts of brucite, magnetite, and very short fiber chrysotile. Although chrysotile fibers up to several microns in length are present in the leathery sheets, most Coalinga chrysotile is much shorter and arranged in a swirling mesh or disoriented, tangled fibers, much like cellulose fibers in paper. Fragments of serpentinite gangue are scattered throughout the ore and contain most of the lizardite, antigorite, and brucite. Chemical, electron probe, and X-ray analyses confirm the iron-rich nature of the brucite, a critical factor in the susceptibility of this phase to oxidation in the surface weathering zone. Here brucite either dissolves, leaving behind a residue of brown, amorphous iron oxides, or transforms in situ to pyroaurite or coalingite. Dissolved magnesium precipitates as hydromagnesite immediately above the water table throughout the deposit.The abnormally high chrysotile content of this deposit is probably a result of the intensive shearing that it underwent during or after emplacement. If the friable, chrysotile-rich ore was produced during this pulverization episode, (1) lizardite and/or antigorite in the serpentinite must have been transformed into chrysotile and (2) brucite must have been removed. It is likely that early-formed lizardite/antigorite dissolved in the ground waters which pervaded the highly sheared body and that chrysotile later precipitated from these waters, coating all available surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.