With technological advances, polymers are increasingly used to manufacture various components that were previously exclusively manufactured with metals. One of the significant challenges in polymer processing is its relatively low thermal resistance, since relatively small temperature variations, especially when compared to metals and ceramics, lead to significant changes in material properties and in the final component geometry. This paper investigated how the internal temperature of polymers, subjected to an intermittent particulate jet deposition process in conjunction with a continuous flow of hot air, is affected by variation in surface roughness, polymer type, and air pressure. As the main result, low efficiency in heat transfer was caused by the combination of the convective nature of the heat exchange with the low thermal conductivity of the polymers. The variables with the most significant influence on the process were the intermittence and pressure of the particulate jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.