Plant height (PH) is an essential trait in the screening of most crops. While in crops such as wheat, medium stature helps reduce lodging, tall plants are preferred to increase total above-ground biomass. PH is an easy trait to measure manually, although it can be labor-intense depending on the number of plots. There is an increasing demand for alternative approaches to estimate PH in a higher throughput mode. Crop surface models (CSMs) derived from dense point clouds generated via aerial imagery could be used to estimate PH. This study evaluates PH estimation at different phenological stages using plot-level information from aerial imaging-derived 3D CSM in wheat inbred lines during two consecutive years. Multi-temporal and high spatial resolution images were collected by fixed-wing (PlatFW) and multi-rotor (PlatMR) unmanned aerial vehicle (UAV) platforms over two wheat populations (50 and 150 lines). The PH was measured and compared at four growth stages (GS) using ground-truth measurements (PHground) and UAV-based estimates (PHaerial). The CSMs generated from the aerial imagery were validated using ground control points (GCPs) as fixed reference targets at different heights. The results show that PH estimations using PlatFW were consistent with those obtained from PlatMR, showing some slight differences due to image processing settings. The GCPs heights derived from CSM showed a high correlation and low error compared to their actual heights (R2 ≥ 0.90, RMSE ≤ 4 cm). The coefficient of determination (R2) between PHground and PHaerial at different GS ranged from 0.35 to 0.88, and the root mean square error (RMSE) from 0.39 to 4.02 cm for both platforms. In general, similar and higher heritability was obtained using PHaerial across different GS and years and ranged according to the variability, and environmental error of the PHground observed (0.06–0.97). Finally, we also observed high Spearman rank correlations (0.47–0.91) and R2 (0.63–0.95) of PHaerial adjusted and predicted values against PHground values. This study provides an example of the use of UAV-based high-resolution RGB imagery to obtain time-series estimates of PH, scalable to tens-of-thousands of plots, and thus suitable to be applied in plant wheat breeding trials.
Tar spot complex (TSC), caused by at least two fungal pathogens, Phyllachora maydis and Monographella maydis , is one of the major foliar diseases of maize in Central and South America. P. maydis was also detected in the United States of America in 2015 and since then the pathogen has spread in the maize growing regions of the country. Although remote sensing (RS) techniques are increasingly being used for plant phenotyping, they have not been applied to phenotyping TSC resistance in maize. In this study, several multispectral vegetation indices (VIs) and thermal imaging of maize plots under disease pressure and disease-free conditions were tested using an unmanned aerial vehicle (UAV) over two crop seasons. A strong relationship between grain yield, a vegetative index (MCARI2), and canopy temperature was observed under disease pressure. A strong relationship was also observed between the area under the disease progress curve of TSC and three vegetative indices (RDVI, MCARI1, and MCARI2). In addition, we demonstrated that TSC could cause up to 58% yield loss in the most susceptible maize hybrids. Our results suggest that the RS techniques tested in this study could be used for high throughput phenotyping of TSC resistance and potentially for other foliar diseases of maize. This may help reduce the cost and time required for the development of improved maize germplasm. Challenges and opportunities in the use of RS technologies for disease resistance phenotyping are discussed.
Objetiva-se, com este trabalho, definir zonas de manejo para cafeicultura por meio dos métodos K-Means e Fuzzy C-Means, com base em determinações realizadas com sensor de clorofila e por análise foliar, e avaliar as zonas de manejo obtidas usando-se os dois métodos de agrupamento. O trabalho foi desenvolvido na Fazenda Jatobá, localizada no município de Paula Cândido, MG, durante o mês de novembro de 2007, enquanto a lavoura se apresentava no estado "chumbinho". A área avaliada apresenta uma lavoura de Coffea arabica L. cv. Catuaí de 2,1 ha. Foram definidas, por meio dos dois métodos propostos, as zonas de manejo, com base nas seguintes análises: Valores de SPAD; concentrações foliares de N, P e K; concentrações foliares de N e Ca; concentrações foliares de N; concentrações foliares de N, Zn e B; concentrações foliares de N, P, K, Ca e S e concentrações foliares de N, Ca e S. Os métodos de agrupamento de dados K-Means e Fuzzy C-Means não apresentaram diferenças na geração das zonas de manejo. Houve baixa similaridade entre as zonas de manejo geradas com uso do SPAD e concentrações foliares.
This study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400-850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices-normalized difference spectral index (NDSI) and ratio spectral index (RSI)-from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R 2 (0.32) were found using both the spectral (NDSI-Ri, 750 to 840 nm and Rj, ±720-736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R 2 ≤ 0.21), (b) a relatively low overall prediction error (RMSE: 0.45-0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: −0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.