Abstract-Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to generate updated display frames. This replaces the default display behavior of repeating application frames until an update is available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the architecture, we compare image quality and latency to that of a classic level-of-detail approach.
Stereo displays suffer from crosstalk, an effect that reduces or even inhibits the viewer's ability to correctly perceive depth. Previous work on software crosstalk reduction focussed on the preprocessing of static scenes which are viewed from a fixed viewpoint. However, in virtual environments scenes are dynamic, and are viewed from various viewpoints in real-time on large display areas.In this paper, three methods are introduced for reducing crosstalk in virtual environments. A non-uniform crosstalk model is described, which can be used to accurately reduce crosstalk on large display areas. In addition, a novel temporal algorithm is used to address the problems that occur when reducing crosstalk in dynamic scenes. This way, high-frequency jitter caused by the erroneous assumption of static scenes can be eliminated. Finally, a perception based metric is developed that allows us to quantify crosstalk. We provide a detailed description of the methods, discuss their tradeoffs, and compare their performance with existing crosstalk reduction methods.
a b s t r a c tDesigning low end-to-end latency system architectures for virtual reality is still an open and challenging problem. We describe the design, implementation and evaluation of a client-server depthimage warping architecture that updates and displays the scene graph at the refresh rate of the display. Our approach works for scenes consisting of dynamic and interactive objects. The end-to-end latency is minimized as well as smooth object motion generated. However, this comes at the expense of image quality inherent to warping techniques. To improve image quality, we present a novel way of detecting and resolving occlusion errors due to warping. Furthermore, we investigate the use of asynchronous data transfers to increase the architecture's performance in a multi-GPU setting. Besides polygonal rendering, we also apply image-warping techniques to iso-surface rendering. Finally, we evaluate the architecture and its design trade-offs by comparing latency and image quality to a conventional rendering system. Our experience with the system confirms that the approach facilitates common interaction tasks such as navigation and object manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.