We present experimental results concerning optical transitions and carrier dynamics (capture and relaxation) in self assembled InAs/GaAs quantum dot structures grown by metalorganic vapor phase epitaxy. Photoluminescence (PL) measurements at high excitation level reveal optical transitions above the ground state emission. These transitions are found to originate from occupied hole states by solving the quantum dot eigenvalue problem. Time-resolved studies after non-resonant pulse excitation exhibit a relaxation ladder of the excited carriers from the GaAs barrier down to the ground state of the quantum dots. From both the continuous-wave measurements and the PL-decay curves we conclude that the carrier relaxation at non-resonant excitation is mediated by Coulomb interaction (Auger effect). PL-decay curves after resonant pulse excitation reveal a longer rise time compared to non-resonant excitation which is a clear indication of a relaxation bottleneck inside the quantum dots. We interpret the rise time (≊ 400 ps) in this case to originate from relaxation via scattering by acoustic phonons. The PL-decay time of the ground state emission ≊700 ps is interpreted as the excitonic lifetime of the quantum dot.
We establish rate equations to describe Auger carrier capture kinetics in quantum dot structures, calculate Auger capture coefficients for self-assembled quantum dots, and analyze Auger capture kinetics using these equations. We show that Auger capture times can be of the order of 1–100 ps depending on barrier carrier and dot densities. Auger capture rates depend strongly on dot diameters and are greatest at dot diameters of about 10–20 nm.
Carrier relaxation in self-assembled quantum dots due to Coulomb interaction with two dimensional ͑2D͒ carriers is studied theoretically. Auger coefficients for carrier relaxation rates are calculated in the dipole approximation for Coulomb interaction. The dipole approximation allows one to derive selection rules for Auger relaxation in a cylindrical quantum dot, and to describe a general picture of Auger relaxation via energy levels in self-assembled quantum dots. A numerical example for InAs/GaAs self-assembled quantum dots demonstrates that the Auger effect may lead to relaxation times in the order of 1-10 ps at 2D carrier densities of 10 11 -10 12 cm Ϫ2 . This result demonstrates the possibility of fast carrier relaxation in quantum dots if the carrier density in the surrounding barrier is sufficiently high. Analytical formulas for Auger coefficients are derived for moderate temperatures of the 2D carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.