Scanpy is a scalable toolkit for analyzing single-cell gene expression data. It includes methods for preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and simulation of gene regulatory networks. Its Python-based implementation efficiently deals with data sets of more than one million cells (https://github.com/theislab/Scanpy). Along with Scanpy, we present AnnData, a generic class for handling annotated data matrices (https://github.com/theislab/anndata).
The introduction of RNA velocity in single cells has opened up new ways of studying cellular differentiation. The originally proposed framework obtains velocities as the deviation of the observed ratio of spliced and unspliced mRNA from an inferred steady state. Errors in velocity estimates arise if the central assumptions of a common splicing rate and the observation of the full splicing dynamics with steady-state mRNA levels are violated. With scVelo (https://scvelo.org), we address these restrictions by solving the full transcriptional dynamics of splicing kinetics using a likelihood-based dynamical model. This generalizes RNA velocity to a wide variety of systems comprising transient cell states, which are common in development and in response to perturbations. We infer gene-specific rates of transcription, splicing and degradation, and recover the latent time of the underlying cellular processes. This latent time represents the cell's internal clock and is based only on its transcriptional dynamics. Moreover, scVelo allows us to identify regimes of regulatory changes such as stages of cell fate commitment and, therein, systematically detects putative driver genes. We demonstrate that scVelo enables disentangling heterogeneous subpopulation kinetics with unprecedented resolution in hippocampal dentate gyrus neurogenesis and pancreatic endocrinogenesis. We anticipate that scVelo will greatly facilitate the study of lineage decisions, gene regulation, and pathway activity identification.
We present Scanpy, a scalable toolkit for analyzing single-cell gene expression data. It includes preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing and simulation of gene regulatory networks. The Python-based implementation efficiently deals with datasets of more than one million cells and enables easy interfacing of advanced machine learning packages. Code is available from https://github.com/theislab/scanpy.
Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions (https://github.com/theislab/paga). PAGA maps preserve the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, adult planaria and the zebrafish embryo and benchmark computational performance on one million neurons.Electronic supplementary materialThe online version of this article (10.1186/s13059-019-1663-x) contains supplementary material, which is available to authorized users.
The temporal order of differentiating cells is intrinsically encoded in their single-cell expression profiles. We describe an efficient way to robustly estimate this order according to diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. Our DPT software implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.