Habitat fragmentation and climate change are recognized as major threats to biodiversity. The major challenge for present day plant populations is how to adapt and cope with altered abiotic and biotic environments caused by climate change, when at the same time adaptive and evolutionary potential is decreased as habitat fragmentation reduces genetic variation and increases inbreeding. Although the ecological and evolutionary effects of fragmentation and climate change have been investigated separately, their combined effects remained largely unexplored. In this review, we will discuss the individual and joint effects of habitat fragmentation and climate change on plants and how the abilities and ways in which plants can respond and cope with climate change may be compromised due to habitat fragmentation.
Conservation genetics is expanding its research horizon with a genomic approach, by incorporating the modern techniques of next-generation sequencing (NGS). Application of NGS overcomes many limitations of conservation genetics. First, NGS allows for genome-wide screening of markers, which may lead to a more representative estimation of genetic variation within and between populations. Second, NGS allows for distinction between neutral and non-neutral markers. By screening populations on thousands of single nucleotide polymorphism markers, signals of selection can be found for some markers. Variation in these markers will give insight into functional rather than neutral genetic variation. Third, NGS facilitates the study of gene expression. Conservation genomics will increase our insight in how the environment and genes interact to affect phenotype and fitness. In addition, the NGS approach opens a way to study processes such as inbreeding depression and local adaptation mechanistically. Conservation genetics programs are directed to a fundamental understanding of the processes involved in conservation genetics and should preferably be started in species for which large databases on ecology, demography and genetics are available. Here, we describe and illustrate the connection between the application of NGS technologies and the research questions in conservation. The perspectives of conservation genomics programs are also discussed.
Next-generation sequencing (NGS) technologies are increasingly applied in many organisms, including nonmodel organisms that are important for ecological and conservation purposes. Illumina and 454 sequencing are among the most used NGS technologies and have been shown to produce optimal results at reasonable costs when used together. Here, we describe the combined application of these two NGS technologies to characterize the transcriptome of a plant species of ecological and conservation relevance for which no genomic resource is available, Scabiosa columbaria. We obtained 528,557 reads from a 454 GS-FLX run and a total of 28,993,627 reads from two lanes of an Illumina GAII single run. After read trimming, the de novo assembly of both types of reads produced 109,630 contigs. Both the contigs and the >75 bp remaining singletons were blasted against the Uniprot/Swissprot database, resulting in 29,676 and 10,515 significant hits, respectively. Based on sequence similarity with known gene products, these sequences represent at least 12,516 unique genes, most of which are well covered by contig sequences. In addition, we identified 4320 microsatellite loci, of which 856 had flanking sequences suitable for PCR primer design. We also identified 75,054 putative SNPs. This annotated sequence collection and the relative molecular markers represent a main genomic resource for S. columbaria which should contribute to future research in conservation and population biology studies. Our results demonstrate the utility of NGS technologies as starting point for the development of genomic tools in nonmodel but ecologically important species.
The basic premise of conservation genetics is that small populations may be genetically threatened. The two steps leading to this premise are: (1) due to prominent influence of random genetic drift and inbreeding allelic and genotypic diversity in small populations is expected to be low, and (2) low allelic diversity and high homozygosity are expected to lead to immediate fitness decreases (inbreeding depression) and a compromised potential for evolutionary adaptation. Conservation genetic research has been strongly stimulated by the application of neutral molecular markers like microsatellites and AFLPs. In general these marker studies have provided evidence for step 1. It is less evident how these markers may provide evidence for step 2. In this essay we argue that, in order to get detailed insight in step 2, adopting a conservation genomic approach, in which conservation genetics will use approaches from ecological and evolutionary functional genomics (ecogenomics), is both necessary and feasible. Conservation genomics is necessary for studying functional genomic variation as function of drift and inbreeding, for studying the mechanisms that relate low genetic variation to low fitness, for integrating environmental and genetic approaches to conservation biology, and for developing modern, fast monitoring tools. The rapid technical and financial developments in genomics currently make conservation genomics feasible, and will improve feasibility in the very near future even further. We therefore argue that conservation genomics personifies part of the near future of conservation genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.