We investigate the surface plasma oxidation of polydimethylsiloxane (PDMS) elastomers and its implication for the morphologies attainable by wrinkling of glassy-elastomer 'bilayers'. The kinetics of glassy skin formation is found to follow a logarithmic dependence with plasma exposure time t and, for various plasma intensities I, the relevant control variable is shown to be dose (≡I × t). We model the mechanism and kinetics of glassy film formation by plasma oxidation with a frontal propagation coarse-grained model, describing the spatio-temporal evolution of a conversion order parameter (ϕ) orthogonal to the film surface. The model is validated by X-ray reflectivity experiments, which confirm the logarithmic growth and quantify the initial growth of a transient, incomplete, skin layer during the early stage of plasma exposure. Three regimes are identified as (I) induction, (II) formation and (III) propagation with a combination of X-ray and wrinkling experiments. The simultaneous increase in thickness and skin mechanical modulus is found to be responsible for an unexpected minimum wavelength λmin attainable, which depends on critical strain εc and is ultimately limited by mechanical failure of the elastomer (λmin ≃ 140 nm is demonstrated at ε = 200%). We conclude by establishing a 1D surface morphology diagram, in terms of wavelength λ and amplitude A, limitations and capabilities for producing highly ordered (sub-)micropatterns over macroscopic areas using plasma oxidised PDMS under uniaxial strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.