A list of standard reference frequency values (LoF) of quantum transitions from the microwave to the optical regime has been recommended by the International Committee for Weights and Measures (Comité international des poids et mesures, CIPM) for use in basic research, technology, and for the metrology of time, frequency and length. The CIPM LoF contains entries that are recommended as secondary representations of the second in the International System of Units, and entries that can be used to serve as realizations of the definition of the metre. The historical perspective that led to the CIPM LoF is outlined. Procedures have been developed for updating existing, and validating new, entries into the CIPM LoF. The CIPM LoF might serve as an entry for a future redefinition of the second by an optical transition.
The 8th International Comparison of Absolute Gravimeters (ICAG2009) took place at the headquarters of the International Bureau of Weights and Measures (BIPM) from September to October 2009. It was the first ICAG organized as a key comparison in the framework of the CIPM Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA) (CIPM 1999). ICAG2009 was composed of a Key Comparison (KC) as defined by the CIPM MRA, organized by the Consultative Committee for Mass and Related Quantities (CCM) and designated as CCM.G-K1. Participating gravimeters and their operators came from national metrology institutes (NMIs) or their designated institutes (DIs) as defined by the CIPM MRA. A Pilot Study (PS) was run in parallel in order to include gravimeters and their operators from other institutes which, while not signatories of the CIPM MRA, nevertheless play important roles in international gravimetry measurements. The aim of the CIPM MRA is to have international acceptance of the measurement capabilities of the participating institutes in various fields of metrology. The results of CCM.G-K1 thus constitute an accurate and consistent gravity reference traceable to the SI (International System of Units), which can be used as the global basis for geodetic, geophysical and metrological observations of gravity. The measurements performed afterwards by the KC participants can be referred to the international metrological reference, i.e. they are SI-traceable. The ICAG2009 was complemented by a number of associated measurements: the Relative Gravity Campaign (RGC2009), high-precision levelling and an accurate gravity survey in support of the BIPM watt balance project. The major measurements took place at the BIPM between July and October 2009. Altogether 24 institutes with 22 absolute gravimeters (one of the 22 AGs was ultimately withdrawn) and nine relative gravimeters participated in the ICAG/RGC campaign. This paper is focused on the absolute gravity campaign. We review the history of the ICAGs and present the organization, data processing and the final results of the ICAG2009. After almost thirty years of hosting eight successive ICAGs, the CIPM decided to transfer the responsibility for piloting the future ICAGs to NMIs, although maintaining a supervisory role through its Consultative Committee for Mass and Related Quantities.
Coordinated Universal Time (UTC) has considerably changed in recent years. The evolution of UTC follows the scientific and industrial progress by developing appropriate models, more adapted calculation algorithms, more efficient and rapid dissemination processes and a well defined traceability chain. The enormous technical progress worldwide has resulted in an impressive number of atomic clocks now available for UTC calculation. The refined time and frequency transfer techniques are approaching the accuracy requested for the new definition of the SI second. The more regular operation of primary frequency standards (PFS) increases the accuracy of UTC and opens a possible new development for time scale algorithms. From the metrological point of view all the ingredients are available for major improvements to UTC. Dissemination of UTC is done by the monthly publication of results in BIPM Circular T. This document makes a quality evaluation of local representations of UTC, named UTC(k), in national institutes, and other organizations, by giving the evolution of their offsets relative to UTC and their respective uncertainties. The clock models adopted and the time transfer techniques have progressively improved over the years, assuring the long-term stability of UTC. Each computation of UTC processes data over one month with five-day sampling and publication. A rapid solution of UTC (UTCr) has existed since 2013, and consists of the processing of daily sampled data over four consecutive weeks, computed and published weekly. It gives quick access to UTC, and allows participating laboratories to better monitor the offsets of their realizations to the reference UTC. The traditional monthly publication, containing results of all the laboratories contributing data to the BIPM for the computation of UTC was complemented after the establishment of the Mutual Recognition Arrangement of the International Committee on Weights and Measures (CIPM MRA). This time comparison, which has been the responsibility of the BIPM since 1988, added as a complement the key comparison on time defined by the Consultative Committee for Time and Frequency (CCTF) in 2006 as CCTF-K001.UTC, where the results published are those of national metrology institutes (NMIs) signatories of the CIPM MRA, or designated institutes (DIs). The traceability issues are formalized in the framework of the CIPM MRA. The development of time metrology activities in the different metrology regions, supports the actions of the BIPM time department to improve the accuracy of [UTC–UTC(k)], where the coordination with the Regional Metrology Organizations (RMOs) has a key role. This paper presents an overview of UTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.