Piles socketed into rock are increasingly used to support loads from large-span bridges and heavy buildings. Peak side resistance is typically related to unconfined compressive strength, sidewall roughness and rock mass quality. This paper presents the results of tests on piles socketed in a weak, artificial rock made of sand, cement, gypsum powder and water. The test results are compared with methods of estimation in which the roughness of the pile-rock interface is modeled explicitly by assuming sinusoidal undulations along the interface. The testing program includes 10 model piles. Some of these piles have nonzero base resistance; others are unsupported at the base. The results indicate that both the degree of roughness of the socket sidewall and the base stiffness are of major importance to the load response of rock-socketed piles. The ultimate unit side resistance was observed to increase substantially with both increasing sidewall roughness and increasing base stiffness, but there is an upper limit to socket roughness beyond which very little increase in side resistance can be obtained. Most of the available correlations used to predict the ultimate side resistance of rocksocketed piles produced conservative estimates for the test piles in this study.
The common challenges for constructing embankments on soft clay include low bearing capacity, large total and differential settlements, and slope instability. Different techniques have been adopted to improve soft clay, such as the use of foundation columns including stone columns, deep mixed columns, and vibro-concrete columns, etc. Due to increased traffic volume, column-supported embankments may be widened to accommodate the traffic capacity need. Adding a new embankment to an existing embankment generates additional stresses and deformations under not only the widened portion but also the existing embankment. Differential settlements between and within the existing embankment and the widened portion may cause pavement distresses. Limited research has been conducted so far to investigate widening of column-supported embankments. In this study, a two-dimensional finite difference numerical method was adopted. This numerical method was first verified against field data and then used for the analysis of widened column-supported embankments over soft clay. The modified Cam-Clay model was used to model the soil under the existing embankment and the widened portion. Mechanically and hydraulically coupled numerical models were created to consider the consolidation of the foundation soil under the existing embankment and the widened portion. Different layouts of foundation columns under the existing embankment and the widened portion were investigated. The numerical results presented in this paper include the vertical and horizontal displacements, the maximum settlements, the transverse gradient changes, and the stress concentration ratios, which depended on column spacing. The columns installed under the connection side slope were most effective in reducing the total and differential settlements, horizontal displacement, and transverse gradient change of the widened embankment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.