The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.
[1] Observations of ultraviolet (UV) emissions from the major ion species (S + , S ++ , S +++ , O + , O ++ ) of the Io plasma torus made during the Cassini flyby (October 2000 to March 2001) have revealed significant time variability. Using a homogeneous model for mass and energy flow in the torus parameterized by five input variables (transport timescale, neutral source strength, ratio of oxygen to sulfur atoms in the source, fraction of superthermal electrons, and temperature of the hot electrons), we have investigated the time variability of the torus properties (density, composition, and temperature) during the Cassini era. In order to match the changes in emissions, the model suggests that a significant change in the neutral source occurred near the beginning of the observing period, decreasing from >1.8 tons/s to 0.7 tons/s. The changes in the neutral source appear to coincide with the declining phase of a dramatic (i.e., 2-3 order of magnitude) peak in iogenic dust emissions observed by Galileo prior to the Cassini era.
Recent results of the first ever orbit through Jupiter's auroral region by NASA's Juno spacecraft did not show evidence of coherent acceleration in the auroral or polar region. However, in this letter, we show energetic particle data from Juno's Jupiter Energetic‐particle Detector Instrument instrument during the third auroral pass that exhibits conclusive evidence of downward parallel electric fields in portions of Jupiter's polar region. The energetic particle distributions show inverted‐V ion and electron structures in a downward electric current region with accelerated peaked distributions in hundreds of keV to ~1 MeV range. The origin of these large electric potential structures is investigated and discussed within the current theoretical framework of current‐voltage relationships at both Earth and Jupiter. Parallel electric fields responsible for accelerating particles to maintain the aurora/magnetospheric circuit appear to be a common phenomenon among strongly magnetized planets with conducting ionospheres; however, their origin and generation mechanisms are subjects of ongoing research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.