Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (< 1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.
Microstructural investigation of an as-cast Cu47.5Zr47.5Al5 bulk metallic glass (BMG) reveals two amorphous phases formed by liquid phase separation. The morphology of the phase separated amorphous regions is spherical with 10–20nm in size. These areas are homogeneously distributed throughout the sample. Moreover, a macroscopic heterogeneity also occurs along with the nano-scale liquid phase separation. The macroscopic heterogeneity can be distinguished from the different degree of the chemical fluctuations in the sample, and the existence of nano-scale crystals of less than 5nm in size. Presumably, both the macroscopic heterogeneity and the nano-scale phase separation enhance branching of the shear bands during deformation in the Cu47.5Zr47.5Al5 BMG.
( Ti 0.705 Fe 0.295 ) 100 − x Sn x (x=0 and 3.85) ultrafine eutectics were prepared by slow cooling from the melt through cold crucible casting. The addition of 3.85 at. % Sn to the binary Ti–Fe eutectic decreases the strength slightly but considerably improves the plastic deformability under uniaxial compressive loading from εf=2.1% to 9.6% strain to failure. The change in the morphology of the eutectic and the distribution of the FeTi phase are suggested as origin of the improvement of the mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.