An approach to low-cost production of Cu(In,Ga)Se2 (CIGS) solar cells based on pulsed electron deposition (PED) has achieved a crucial milestone. Lab-scale solar cells with efficiencies exceeding 15% were obtained by depositing CIGS from a stoichiometric quaternary target at 270 °C and without any post-growth treatment. An effective control of the p-doping level in CIGS was achieved by starting the PED deposition with a layer of NaF tailored to generate the optimum Na diffusion. These results show that PED is a promising technology for the development of a competitive low-cost production process for CIGS solar cells.
Zinc oxide (ZnO) is one of the most promising materials for realizing three-dimensional (3D) nanostructured transparent conducting oxides (TCOs) on large scale, because it is cheap, it can be modified with large concentrations of trivalent elements (such Al, Ga or In) and it is characterized by good electron mobility, wide bandgap and visible-range transparency. But, above all, it can be easily obtained in the form of different nanostructures with a large number of growth techniques. A solution-free and catalyst-free approach has been explored here by the vapor phase synthesis of vertically aligned ZnO nanorods on ZnO:Al (AZO) films grown by pulsed electron deposition (PED). The obtained nanostructured TCOs resulted to be homogeneous on large areas and easily patternable by means of mechanical masks. The morphology, crystalline structure, electrical and optical properties of the obtained samples have been characterized in depth. The possible use of such a nanostructured TCO in excitonic (e.g. DSSC) or low-reflectivity traditional solar cells is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.