Abstract. The limited-area ensemble prediction system COSMO-LEPS has been running every day at ECMWF since November 2002. A number of runs of the non-hydrostatic limited-area model Lokal Modell (LM) are available every day, nested on members of the ECMWF global ensemble. The limited-area ensemble forecasts range up to 120 h and LM-based probabilistic products are disseminated to several national and regional weather services. Some changes of the operational suite have recently been made, on the basis of the results of a statistical analysis of the methodology. The analysis is presented in this paper, showing the benefit of increasing the number of ensemble members. The system has been designed to have a probabilistic support at the mesoscale, focusing the attention on extreme precipitation events. In this paper, the performance of COSMO-LEPS in forecasting precipitation is presented. An objective verification in terms of probabilistic indices is made, using a dense network of observations covering a part of the COSMO domain. The system is compared with ECMWF EPS, showing an improvement of the limited-area high-resolution system with respect to the global ensemble system in the forecast of high precipitation values. The impact of the use of different schemes for the parametrisation of the convection in the limited-area model is also assessed, showing that this have a minor impact with respect to run the model with different initial and boundary condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.