The problem of choosing an optimal strategy for moving in the rain has attracted considerable attention among physicists and other scientists. Taking a novel approach, this paper shows, by studying simple shaped bodies, that the answer depends on the shape and orientation of the moving body and on wind direction and intensity. For different body shapes, the best strategy may be different: in some cases, it is best to run as fast as possible, while in some others there is an optimal speed.
A new proton recoil telescope (PRT) detector is presented: it is composed by an active multilayer of segmented plastic scintillators as neutron to proton converter, by two silicon strip detectors and by a final thick CsI(Tl) scintillator. The PRT can be used to measure neutron spectra in the range 2–160 MeV. The detector characteristics have been studied in detail with the help of Monte Carlo simulations. The overall energy resolution of the system ranges from about 20% at the lowest neutron energy to about 2% at 160 MeV. The global efficiency is about 3 10 5. Experimental tests have been performed by using the reaction 13C(d,n) at 40 MeV deuteron energy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.