Abstract. The southern hemisphere marine Aerosol Characterization Experiment (ACE 1) was the first of a series of experiments that will quantify the chemical and physical processes controlling the evolution and properties of the atmospheric aerosol relevant to radiative forcing and climate. The goals of this series of process studies are to reduce the overall uncertainty in the calculation of climate forcing by aerosols and to understand the multiphase atmospheric chemical system sufficiently to be able to provide a prognostic analysis of future radiative forcing and climate response. ACE 1, which was conducted from November 15 to December 14, 1995, over the southwest Pacific Ocean, south of Australia, quantified the chemical, physical, radiative, and cloud nucleating properties and furthered our understanding of the processes controlling the aerosol properties in this minimally polluted marine atmosphere. The experiment involved the efforts of scientists from 45 research institutes in 11 countries.
Abstract. Subantarctic Southern Ocean surface waters in the austral summer and autumn are characterized by high concentrations of nitrate and phosphate but low concentrations of dissolved iron (Fe,-0.05 nM) and silicic acid (Si, <1 gM). During the Subantarctic Zone AU9706 cruise in March 1998 we investigated the relative importance of Fe and Si in controlling phytoplankton growth and species composition at a station within the subantarctic water mass (46.8øS, 142øE) using shipboard bottle incubation experiments. Treatments included unamended controls; 1.9 nM added iron (+Fe); 9 [tM added silicic acid (+Si); and 1.9 nM added iron plus 9 [tM added silicic acid (+Fe+Si). We followed a detailed set of biological and biogeochemical parameters over 8 days. Fe added alone clearly increased community growth rates and nitrate drawdown and altered algal community composition relative to control treatments. Surprisingly, small, lightly silicified pennate diatoms grew when Fe was added either with or without Si, despite the extremely low ambient silicic acid concentrations. Pigment analyses suggest that lightly silicified chrysophytes (type 4 haptophytes) may have preferentially responded to Si added either with or without Fe. However, for many of the parameters measured the +Fe+Si treatments showed large increases relative to both the +Fe and +Si treatments. Our results suggest that iron is the proximate limiting nutrient for chlorophyll production, photosynthetic efficiency, nitrate drawdown, and diatom growth, but that Si also exerts considerable control over algal growth and species composition. Both nutrients together are needed to elicit a maximum growth response, suggesting that both Fe and Si play important roles in structuring the subantarctic phytoplankton community.
Abstract. Carbon isotopic compositions of suspended organic matter and biomarker compounds were determined for 59 samples filtered from Southern Ocean surface waters in January 1994 along two north-south transects (WOCE SR3 from Tasmania to Antarctica, and across the Princess Elizabeth Trough (PET) east of Prydz Bay, Antarctica). Along the SR3 line, bulk organic matter show generally decreasing 13C contents southward, which are well correlated with increasing dissolved molecular carbon dioxide concentrations, CO2(aq). This relationship does not hold along the PET transect. Using concentrations and isotopic compositions of molecular compounds, we evaluate the relative roles of several factors affecting the •513C of Southern Ocean suspended particulate organic matter. Along the WOCE SR3 transect, the concentration of CO2(aq) plays an important role. It is well described by a supply versus demand model for the extent of cellular CO2 utilization and its associated linear dependence of isotopic fractionation (ep) on the reciprocal of CO2(aq). An equally important factor appears to be changes in algal assemblages along the SR3 transect, with their contribution to isotopic fractionation also well described by the supply and demand model, when formulated to include the cell surface/volume control of supply. Changes in microalgal growth rates appear to have a minor effect on ep. Along the PET transect, algal assemblage changes and possibly changes in microalgal growth rates appear to strongly affect the carbon isotopic variations of suspended organic matter. These results can be used to improve the formulation of modem carbon cycle models that include phytoplankton carbon isotopic fractionation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.