In humans, the glycine N-acyltransferase enzyme (GLYAT) is thought to be important in the detoxification of endogenous and xenobiotic compounds which contain a carboxylic acid group, such as benzoic, isovaleric, or acetylsalicylic acids. The aim of this work was to report a comprehensive investigation of GLYAT genetic polymorphisms in DNA samples from 55 subjects of French Caucasian origin, using polymerase chain reaction-single-strand conformation polymorphism and sequencing strategies. Seven different polymorphisms of the GLYAT gene were identified, including two polymorphisms in the 5' flanking region of the gene (g.-8457C>T and g.-8010A>G), two polymorphisms in intron 5 (g.13931A>G and g.13944C>T) and three missense mutations in exon 2 (g.49T>A; p.Ser17Thr), exon 5 (g.13886A>G; p.Asn156Ser) and exon 6 (g.14435C>T; p.Arg199Cys). In addition to the wild-type allele GLYAT*1 (2.7%), four novel alleles were identified: GLYAT*2A (75.5%), *2B (4.5%), *3 (16.4%) and *4 (0.9%), and five different genotypes. Localisation of the p.Ser17Thr and p.Arg199Cys missense mutations in predicted secondary structures suggest that these variants might have a potential role on the GLYAT protein activity. These results could be helpful in investigating the potential association of GLYAT variants with an incidence of reduced efficiency in xenobiotic carboxylic acids detoxification in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.