Abstract-Dynamic routing protocols such as RIP and OSPF essentially implement distributed algorithms for solving the shortest paths problem. The border gateway protocol (BGP) is currently the only interdomain routing protocol deployed in the Internet. BGP does not solve a shortest paths problem since any interdomain protocol is required to allow policy-based metrics to override distance-based metrics and enable autonomous systems to independently define their routing policies with little or no global coordination. It is then natural to ask if BGP can be viewed as a distributed algorithm for solving some fundamental problem. We introduce the stable paths problem and show that BGP can be viewed as a distributed algorithm for solving this problem. Unlike a shortest path tree, such a solution does not represent a global optimum, but rather an equilibrium point in which each node is assigned its local optimum.We study the stable paths problem using a derived structure called a dispute wheel, representing conflicting routing policies at various nodes. We show that if no dispute wheel can be constructed, then there exists a unique solution for the stable paths problem. We define the simple path vector protocol (SPVP), a distributed algorithm for solving the stable paths problem. SPVP is intended to capture the dynamic behavior of BGP at an abstract level. If SPVP converges, then the resulting state corresponds to a stable paths solution. If there is no solution, then SPVP always diverges. In fact, SPVP can even diverge when a solution exists. We show that SPVP will converge to the unique solution of an instance of the stable paths problem if no dispute wheel exists.
We consider requests for capacity in a given tree network T = ( V , E ) where each edge e of the tree has some integer capacity u e . Each request f is a node pair with an integer demand d f and a profit w f which is obtained if the request is satisfied. The objective is to find a set of demands that can be feasibly routed in the tree and which provides a maximum profit. This generalizes well-known problems, including the knapsack and b -matching problems. When all demands are 1, we have the integer multicommodity flow problem. Garg et al. [1997] had shown that this problem is NP-hard and gave a 2-approximation algorithm for the cardinality case (all profits are 1) via a primal-dual algorithm. Our main result establishes that the integrality gap of the natural linear programming relaxation is at most 4 for the case of arbitrary profits. Our proof is based on coloring paths on trees and this has other applications for wavelength assignment in optical network routing. We then consider the problem with arbitrary demands. When the maximum demand d max is at most the minimum edge capacity u min , we show that the integrality gap of the LP is at most 48. This result is obtained by showing that the integrality gap for the demand version of such a problem is at most 11.542 times that for the unit-demand case. We use techniques of Kolliopoulos and Stein [2004, 2001] to obtain this. We also obtain, via this method, improved algorithms for line and ring networks. Applications and connections to other combinatorial problems are discussed.
The authors settle the complexity status of the robust network design problem in undirected graphs. The fact that the flow-cut gap in general graphs can be large, poses some difficulty in establishing a hardness result. Instead, the authors introduce a single-source version of the problem where the flow-cut gap is known to be one. They then show that this restricted problem is coNP-Hard. This version also captures, as special cases, the fractional relaxations of several problems including the spanning tree problem, the Steiner tree problem, and the shortest path problem.
The domination number y ( G ) of a graph G = (V E ) is the minimum cardinality of a subset of Vsuch that every vertex is either in the set or is adjacent to some vertex in the set. We show that if a connected graph G has minimum2degree two and is not one of seven exceptional graphs, then y ( g ) I ~l V l .We also characterize those connected graphs with y ( G ) = FJVI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.