This paper illustrates the effects of the dynamics of bubbles with arbitrary vapor-gas contents on the inviscid and viscous stability of two-dimensional parallel bubbly flows of low void fraction. The linear perturbation equations derived for the stability analysis include the effects of bubble compressibility, inertia, and energy dissipation due to the viscosity of the liquid and the transfer of heat and mass as a consequence of compression/expansion of the noncondensable gas and evaporation/condensation of the vapor contained in the bubbles. Numerical solution of the spatial stability problem for two-dimensional inviscid shear layers and Blasius boundary layers confirms that the presence of the dispersed phase is generally in favor of stability. Significant deviations from the classical results for compressible and incompressible single phase fluids are observed, especially when the occurrence of large compliant and/or resonant oscillations of the bubbles greatly enhances their dynamic coupling with the perturbation field. More importantly, the present analysis points out some major differences in the stability of parallel flows with noncondensable gas bubbles with respect to cavitating flows containing bubbles with a dominant content of vapor. Unconditional stability is predicted in the travelling bubble cavitation limit for low pressures and high vapor mass fraction of the bubble contents. Results are shown to illustrate these effects for some representative flow configurations and conditions. [S0098-2202(00)00603-9]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.