The Protein Data Bank is a computer-based archival file for macromolecular structures. The Bank stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies. Text included in each data entry gives pertinent information for the structure at hand (e.g. species from which the molecule has been obtained, resolution of diffraction data, literature citations and specifications of secondary structure). In addition to atomic co-ordinates and connectivities, the Protein Data Bank stores structure factors and phases, although these latter data are not placed in any uniform format. Input of data to the Bank and general maintenance functions are carried out at Brookhaven National Laboratory. All data stored in the Bank are available on magnetic tape for public distribution, from Brookhaven (to laboratories in the Americas), Tokyo (Japan), and Cambridge (Europe and worldwide). A master file is maintained at Brookhaven and duplicate copies are stored in Cambridge and Tokyo. In the future, it is hoped to expand the scope of the Protein Data Bank to make available co-ordinates for standard structural types (e.g. a-helix, RNA double-stranded helix) and representative computer programs of utility in the study and interpretation of macromolecular structures.The Protein Data Bank' [1,2] was established in 1971 as a computer-based archival file for macromolecular structures. The purpose of the Bank is to collect, standardize, and distribute atomic co-ordinates and other data from crystallographic studies. As the number of solved protein and nucleic-acid structures has grown to the point where some lo7 characters are necessary to represent the co-ordinate information currently held, the need for such a computer-readable file has become very clear, and demands for the Bank's services have increased accordingly. The Protein Data Bank is one of several data base activities in the field of crystallography, e.g. the Bibliographic
) is visualization research scientist at Louisiana State University, specializing in astrophysics and computational fluid dynamics CHRISTOPH BEST (best@ebi.ac.uk) is project leader at the European Bioinformatics Institute, specializing in electron microscopy image informatics THE BIOLOGICAL SCIENCES need a generic image format suitable for long-term storage and capable of handling very large images. Images convey profound ideas in biology, bridging across disciplines. Digital imagery began 50 years ago as an obscure technical phenomenon. Now it is an indispensable computational tool. It has produced a variety of incompatible image file formats, most of which are already obsolete.Several factors are forcing the obsolescence: rapid increases in the number of pixels per image; acceleration in the rate at which images are produced; changes in image designs to cope with new scientific instrumentation and concepts; collaborative requirements for interoperability of images collected in different labs on different instruments; and research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.