Background and purpose: Activation of post-synaptic 5-HT1A receptors may provide enhanced therapy against depression. We describe the signal transduction profile of F15599, a novel 5-HT1A receptor agonist. ]-GTPgS binding more potently in frontal cortex than raphe. F15599, unlike 5-HT, more potently and efficaciously stimulated Gai than Gao activation. In rat prefrontal cortex (a region expressing post-synaptic 5-HT1A receptors), F15599 potently activated ERK1/2 phosphorylation and strongly induced c-fos mRNA expression. In contrast, in raphe regions (expressing pre-synaptic 5-HT1A receptors) F15599 only weakly or did not induce c-fos mRNA expression. Finally, despite its more modest affinity in vitro, F15599 bound to 5-HT1A receptors in vivo almost as potently as F13714. Conclusions and implications: F15599 showed a distinctive activation profiles for 5-HT1A receptor-mediated signalling pathways, unlike those of reference agonists and consistent with functional selectivity at 5-HT1A receptors. In rat, F15599 potently activated signalling in prefrontal cortex, a feature likely to underlie its beneficial effects in models of depression and cognition.
The study examined the validity of oral fentanyl self-administration (FSA) as a measure of the chronic nociceptive pain that develops in rats with adjuvant arthritis independently of acute noxious challenges. Arthritic rats self-administered more of a 0.008 mg/ml fentanyl solution (up to 3.4 g/rat per day) than non-arthritic controls (0.5 g/rat per day) and did so with a biphasic time course that reached peak during weeks 3 and 4 after inoculation with Mycobacterium butyricum. The time course paralleled both the disease process and the chronic pain. Continuous infusion of dexamethasone during weeks 3 and 4 via subcutaneous osmotic pumps at 0.0025-0.04 mg/rat per day disrupted the arthritic disease and decreased FSA to a level (i.e. by 65%) similar to that observed in non-arthritic rats. Continuous naloxone (2.5 mg/rat per day) decreased FSA (by 55%) in arthritic but not in non-arthritic animals. Continuous, subcutaneous infusion of fentanyl also decreased arthritic FSA in a manner that varied with dose at 0.04-0.16 mg/rat per day doses, but leveled off at 47% of controls with 0.31 mg/rat per day. The effects of continuous fentanyl on arthritic FSA occurred only with those doses and dose-dependent dynamics with which fentanyl also induced dependence in non-arthritic rats. The findings indicate that pain, rather than the rewarding or dependence-inducing action of fentanyl mediates FSA in arthritic rats. Paralleling patient-controlled analgesic drug intake, FSA offers a specific measure allowing the dynamic effects of neurobiological agents to be studied in this unique animal model of persistent nociceptive pain.
Intradermal inoculation of rats at the tail base with Mycobacterium butyricum led to the gradual development of an arthritic swelling of the limbs which peaked at 3 weeks and subsided thereafter. Arthritic rats displayed a loss of body weight, hypophagia, and hypodipsia in addition to a disruption of the diurnal rhythms of ingestive behavior and of core temperature. The activity of adenohypophyseal beta- endorphin-(beta-EP) secreting corticotrophs, in contrast to prolactin- (PRL) secreting lactotrophs, was increased in arthritic rats. Indeed, hypertrophy of the adrenal glands was seen. Arthritic rats also showed an elevation in spinal cord levels of immunoreactive dynorphin (DYN), an endogenous ligand of the kappa-opioid receptor. The paws and tail of arthritic rats showed lower thresholds in response to noxious pressure (hyperalgesia), higher thresholds in response to noxious heat (hypoalgesia), and no change in their response to noxious electrical stimulation. Neither naloxone nor ICI-154, 129 (a preferential delta- receptor antagonist) modified the responses of the paw or tail to pressure. However, MR 2266 (an antagonist with higher activity at kappa- receptors) decreased thresholds to pressure in arthritic, but not control, rats; that is, it potentiated the hyperalgesia. This action was stereospecific. None of the antagonists modified the response to heat. MR 2266 did not affect the response to pressure in rats with acute inflammation produced by yeast. Thus, the potentiation of pressure hyperalgesia by MR 2266 in chronic arthritic rats is highly selective. Arthritic rats showed a reduced response to the analgesic effect of a kappa-agonist (U-50,488H), whereas the response to a mu- agonist (morphine) was enhanced. These effects were specific to nociception in that their influence upon endocrine secretion (PRL and beta-EP) was otherwise changed. The secretion of beta-EP and PRL was stimulated by both morphine and U-50,488H, and the influence of U- 50,488H upon the release of beta-EP (from the adenohypophysis) was enhanced in arthritic rats. It is suggested that polyarthritis is a complex condition entailing many changes, both behavioral and endocrinological. Further, arthritic rats cannot simply be described as “hyperalgesic”: of critical importance is the nature of the nociceptive stimulus applied. The parallel alterations in spinal cord pools of DYN and kappa-receptors (see also Millan et al., 1986) and the changes in the influence on nociception of kappa-agonists and kappa-antagonists suggest an increased activity of spinal DYN. Thus, spinal kappa- receptors may play a role in the modulation of nociception under chronic pain.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.