Background: Microalbuminuria is an early sign of kidney disease in diabetes and indicates cardiovascular risk. We tested if a prespecified urinary proteomic risk classifier (CKD273) was associated with development of microalbuminuria and if progression to microalbuminuria could be prevented with the mineralocorticoid receptor antagonist spironolactone. Methods: Prospective multicentre study in people with type 2 diabetes, normal urinary albumin excretion and preserved renal function in 15 European specialist centres. High-risk individuals determined by CKD273 were randomised 1:1 (interactive web response system) in a double-blind randomised controlled trial comparing spironolactone 25 mg o.d. to placebo. Primary endpoint was development of confirmed microalbuminuria in all individuals with available data. Secondary endpoints included reduction in incidence of microalbuminuria with spironolactone and association between CKD273 and impaired renal function defined as a glomerular filtration rate < 60 ml/min per 1•73 m 2. This study is registered with ClinicalTrials.gov: NCT02040441 and is completed. Findings: From March 25, 2014 to September 30, 2018 we followed 1775 participants, 12% (n=216) had high-risk urinary proteomic pattern of which 209 were included in the trial and assigned spironolactone (n=102) or placebo (n=107). Median follow-up time was 2•51 years (IQR 2•0-3•0). Progression to microalbuminuria was seen in 28•2% of high-risk and 8•9% of low-risk people (P< 0•001) (hazard ratio (HR), 2•48; 95% confidence interval [CI], 1•80 to 3•42 P<0•001, independent of baseline clinical characteristics). A 30% decline in eGFR from baseline was seen in 42 (19•4 %) high-risk participants compared to 62 (3•9 %) low-risk participants, HR 5•15; 95 % CI (3•41 to 7•76; p<0.0001). Development of microalbuminuria was seen in 35 (33%) randomised to placebo and 26 (25%) randomised to spironolactone treatment (HR 0•81, 95% CI, 0•49 to 1•34, P=0•41). Harms: hyperkalaemia was seen in 13 versus 4, and gynaecomastia in 3 versus 0 subjects on spironolactone and placebo, respectively. Interpretation: In people with type 2 diabetes and normoalbuminuria, the urinary proteomic classifier CKD273 was associated with a 2•5 times increased risk for progression to microalbuminuria over a median of 2•5 years, independent of clinical characteristics. Spironolactone did not prevent progression to microalbuminuria in high-risk subjects.
both rheumatoid arthritis and ulcerative colitis 2 weeks after a normal delivery. 4 Accordingly, this case suggests the contribution of the antiaromatase treatment. In this case, additional factors such as the presence of the shared epitope could explain the switch from common benign arthralgias to active destructive rheumatoid arthritis. At the late stage, cessation of treatment had no effect on arthritis. The presence of erosions suggests that the patient had rheumatoid arthritis with low disease activity, which became worse when aromatase inhibitors were used. Accordingly, arthralgias in women receiving aromatase inhibitors should be better evaluated to estimate the incidence of rheumatoid arthritis.
Hyperglycemia induces regional hemodynamic changes, as suggested by animal studies. These hemodynamic changes may play an initiating role in the pathogenesis of diabetic microangiopathy. The aim of the present study was to evaluate the effects of acute local hyperglycemia for 24 h on basal human forearm muscle and skin blood flow and endothelium-dependent and -independent vasoreactivity. Local hyperglycemia (approximately 15 mM) was induced by infusion of 5% glucose into the brachial artery of the nondominant arm. In control experiments, the same individual amount of glucose was infused intravenously in the dominant arm to correct for possible systemic effects of the infused glucose. Vasoreactivity of the forearm vasculature was evaluated by local infusion of acetylcholine (ACh), sodium nitroprusside (SNP), NG-monomethyl-L-arginine (L-NMMA), and norepinephrine (NE) into the brachial artery. Regional hemodynamic measurements were performed at baseline and after 6, 12, and 24 h of local hyperglycemia. Median (with interquartile range) basal forearm (muscle) blood flow (FBF) was not influenced by the 24-h local hyperglycemia [infused-to-contralateral arm FBF ratio for glucose 1.32 (1.16-1.64) vs. control 1.54 (1.34-1.69)]. Skin microcirculatory blood flow (laser Doppler flowmetry, LDF) was not influenced by the 24-h local hyperglycemia [LDF ratio for glucose 1.00 (0.62-1.56) vs control 0.80 (0.58-1.14)]. In addition, the vasoreactivity of both muscle and skin (not shown) vasculature to ACh [percent change in FBF ratio for glucose 167% (81-263) vs. control 148% (94-211)], SNP [for glucose 486% (178-586) vs. control 293% (196-454)], L-NMMA [for glucose -36% (-56 to -22) vs. control -41% (-51 to -24)], and NE [for glucose -48% (-72 to -41) vs. control -66% (-79 to -33)] was also not affected by the local hyperglycemia. Thus, in contrast to animal studies, our results suggest that a moderate-to-severe hyperglycemia does not affect the regulation of basal blood flow or endothelium-dependent or -independent vasoreactivity in humans.
It is unknown whether and to what extent changes in various endothelial functions and adrenergic responsiveness are related to the development of microvascular complications in type 1 diabetes. Therefore, endothelium-dependent and endothelium-independent vasodilatation, endothelium-dependent hemostatic factors, and one and two adrenergic vasoconstrictor responses were determined in type 1 patients with and without microvascular complications. A total of 34 patients with type 1 diabetes were studied under euglycemic conditions on two occasions (11 without microangiopathy, 10 with proliferative and preproliferative retinopathy previously treated by laser coagulation, 13 with microalbuminuria, and 12 healthy volunteers also were studied). Forearm vascular responses to brachial artery infusions of N(G)-monomethyl-L-arginine (L-NMMA), sodium nitroprusside, acetylcholine (ACh), clonidine, and phenylephrine were determined. The ACh infusions were repeated during coinfusion of L-arginine. Furthermore, plasminogen activator inhibitor type 1 (PAI-1) activity, tissue plasminogen activator antigen levels, von Willebrand factor antigen levels, tissue factor pathway inhibitor (TFPI) activity, and endothelin-1 levels were measured. No differences in endothelium-dependent or endothelium-independent vasodilatation or adrenergic constriction were observed between the diabetic patients and the healthy volunteers. In comparison to the first ACh infusion, the maximal response to repeated ACh during L-arginine administration was reduced in the diabetic patients, except in the patients with proliferative and preproliferative retinopathy previously treated by laser coagulation. In these patients, the combined infusion of L-arginine and ACh resulted in an enhanced response. TFPI activity was elevated, and PAI-1 activity was reduced in the type 1 diabetic patients. Furthermore, PAI-1 activity was positively correlated with urinary albumin excretion (r = 0.48, P < 0.01) and inversely correlated with the vasodilatory response to the highest ACh dose (r = -0.37, P < 0.05). The response to the highest ACh and L-NMMA dose were positively correlated with mean arterial blood pressure (r = 0.32, P < 0.01; r = 0.41, P < 0.01, respectively). Forearm endothelium-dependent and endothelium-independent vasodilatation and adrenergic responsiveness were unaltered in type 1 diabetic patients with and without microvascular complications. Relative to healthy control subjects, endothelium-dependent vasodilatation was depressed during a repeated ACh challenge (with L-arginine coinfusion) in the diabetic patients without complications or with microalbuminuria. In contrast, this vasodilatation was enhanced in the patients with retinopathy. Elevation of TFPI was the most consistent marker of endothelial damage of all the endothelial markers measured.
The venous system plays a pivotal role in volume and blood pressure homeostasis. We tested the hypothesis that the visco-elastic properties of the peripheral venous system are reduced in patients with (incipient) diabetic nephropathy. Twenty-two normotensive patients with long-term insulin-dependent diabetes mellitus (IDDM), 11 without and 11 with (incipient) nephropathy (eight microalbuminuria and three proteinuria, serum creatinine below 100 mumol l-1), and 14 healthy age/sex matched controls were studied. Forearm venous compliance (VENCOMP) was determined using strain gauge plethysmography and direct intravenous pressure measurements. Furthermore, the venodilatory effect of 0.4 mg sublingual nitroglycerin (NTG) was studied. In comparison with healthy controls, VENCOMP was decreased in patients without and with (incipient) nephropathy, without any differences between the two diabetic groups: 0.059 (0.052-0.066), 0.044 (0.038-0.059) and 0.049 (0.046-0.058) ml 100 ml-1 mmHg-1, respectively (medians and interquartile ranges) (P < 0.05). No differences in the increase of forearm volume after NTG were observed: 0.34 (0.11-0.51), 0.37 (0.19-0.50) and 0.39 (0.20-0.55) ml 100 ml-1, respectively. In conclusion, the visco-elastic properties of the peripheral venous system are reduced in patients with long-term IDDM. This reduction is not related to the presence of nephropathy. No major differences were observed in NTG-induced venodilation between diabetic patients and healthy subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.