We present a large and updated stellar evolution database for low-, intermediate-, and high-mass stars in a wide metallicity range, suitable for studying Galactic and extragalactic simple and composite stellar populations using population synthesis techniques. The stellar mass range is between $0.5 and 10 M with a fine mass spacing. The metallicity [Fe/ H] comprises 10 values ranging from À2.27 to 0.40, with a scaled solar metal distribution. The initial He mass fraction ranges from Y ¼ 0:245, for the more metal-poor composition, up to 0.303 for the more metal-rich one, with ÁY =ÁZ $ 1:4. For each adopted chemical composition, the evolutionary models have been computed without (canonical models) and with overshooting from the Schwarzschild boundary of the convective cores during the central H-burning phase. Semiconvection is included in the treatment of core convection during the He-burning phase. The whole set of evolutionary models can be used to compute isochrones in a wide age range, from $30 Myr to $15 Gyr. Both evolutionary models and isochrones are available in several observational planes, employing an updated set of bolometric corrections and color-T eA relations computed for this project. The number of points along the models and the resulting isochrones is selected in such a way that interpolation for intermediate metallicities not contained in the grid is straightforward; a simple quadratic interpolation produces results of sufficient accuracy for population synthesis applications.We compare our isochrones with results from a series of widely used stellar evolution databases and perform some empirical tests for the reliability of our models. Since this work is devoted to scaled solar chemical compositions, we focus our attention on the Galactic disk stellar populations, employing multicolor photometry of unevolved field main-sequence stars with precise Hipparcos parallaxes, well-studied open clusters, and one eclipsing binary system with precise measurements of masses, radii, and [Fe/ H] of both components. We find that the predicted metallicity dependence of the location of the lower, unevolved main sequence in the color magnitude diagram (CMD) appears in satisfactory agreement with empirical data. When comparing our models with CMDs of selected, well-studied, open clusters, once again we were able to properly match the whole observed evolutionary sequences by assuming cluster distance and reddening estimates in satisfactory agreement with empirical evaluations of these quantities. In general, models including overshooting during the H-burning phase provide a better match to the observations, at least for ages below $4 Gyr. At [Fe/ H] around solar and higher ages (i.e., smaller convective cores) before the onset of radiative cores, the selected efficiency of core overshooting may be too high in our model, as well as in various other models in the literature. Since we also provide canonical models, the reader is strongly encouraged to always compare the results from both sets in this critical age range.
Abstract.We present an empirical model-atmosphere investigation of missing Fe I opacity. Houdashelt et al. (2000) estimated that if Dragon & Mutschlecner (1980) Fe I cross sections used in the MARCS model atmospheres (Gustafsson et al. 1975) were replaced by the Bautista (1997) cross sections the solar continuous flux would be reduced by 15% in the near ultraviolet. That would imply systematic errors in models for F, G, and K stars. As a consequence, since ATLAS9 (Kurucz 1993a) uses an approximation to the same Dragon & Mutschlecner (1980) opacities, there should also be similar systematic errors in ATLAS9 models that required this investigation. Bound-free Fe I cross sections computed by Bautista (1997) in the framework of the IRON Project were used to generate the continuous Fe I absorption coefficient. It was incorporated in the Kurucz (1993a) ATLAS9 code, in place of that currently used, which is based on approximate cross sections by Kurucz. By combining Opacity Distribution Functions (ODFs) computed without the contribution of Fe I autoionization lines with the new Fe I absorption coefficient which is crowded with autoionization resonances, we obtained solar metallicity model atmospheres and energy distributions for several combinations of T eff and log g. The comparison of these models with the standard ATLAS9 models has shown that there are no differences in the T -τ Ross relations, while there are some changes in the energy distributions for T eff ≤ 7000 K, but limited to small wavelength regions around 2150 Å, where Kurucz has less opacity, and 3350 Å, where Bautista has less opacity. The differences are of the order of 25% and less than 10%, respectively. That around 2150 Å disappears for T eff ≤ 5500 K owing to the fall of the emergent flux at these wavelengths in cool stars. This behaviour is independent of the gravity. The explanation is that our line list actually has more autoionizing opacity than Bautista's but it is treated as bound-bound line opacity rather than as bound-free opacity.
We present a large, new set of stellar evolution models and isochrones for an α-enhanced metal distribution typical of Galactic halo and bulge stars; it represents a homogeneous extension of our stellar model library for a scaled-solar metal distribution already presented in Pietrinferni et al. (2004). The effect of the α−element enhancement has been properly taken into account in the nuclear network, opacity, equation of state and, for the first time, the bolometric corrections, and color transformations. This allows us to avoid the inconsistent use -common to all α-enhanced model libraries currently available -of scaledsolar bolometric corrections and color transformations for α-enhanced models and isochrones. We show how bolometric corrections to magnitudes obtained for the U, B portion of stellar spectra (i.e. not only the Johnson-Cousins filters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.