The probability of hot-hole injection has been measured both on metal nitride-oxide silicon (MNOS) and metal-oxide-semiconductor (MOS) structures in the case where the silicon electric field is one dimensional and normal to the interface. The experiment uses the effect of optically induced hot carrier injection as proposed by Ning et al. [J. Appl. Phys. 48, 286 (1977)]. In the case of MNOS structures, the hot-hole injection currents can be readily measured because the Si-Si3N4 interface barrier is lower than the Si-SiO2 interface barrier. Measurements on MOS structures were carried out using heavily doped silicon. The measurements have been interpreted using the lucky carrier model with some modifications: the hot-hole mean-free path has been found equal to 41±5 Å in the case of MOS structures. Taking into account the accuracy of the measurements, this value is compatible with the value derived in the case of MNOS structures and also with the value derived from ionization measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.