The A/H1N1 influenza strain isolated in Mexico in 2009 caused severe pulmonary illness in a small number of exposed individuals. Our objective was to determine the influence of genetic factors on their susceptibility. We carried out a case–control association study genotyping 91 patients with confirmed severe pneumonia from A/H1N1 infection and 98 exposed but asymptomatic household contacts, using the HumanCVD BeadChip (Illumina, San Diego, CA, USA). Four risk single-nucleotide polymorphisms were significantly (p<0.0001) associated with severe pneumonia: rs1801274 (Fc fragment of immunoglobulin G, low-affinity IIA, receptor (FCGR2A) gene, chromosome 1; OR 2.68, 95% CI 1.69–4.25); rs9856661 (gene unknown, chromosome 3; OR 2.62, 95% CI 1.64–4.18); rs8070740 (RPA interacting protein (RPAIN) gene, chromosome 17; OR 2.67, 95% CI 1.63–4.39); and rs3786054 (complement component 1, q subcomponent binding protein (C1QBP) gene, chromosome 17; OR 3.13, 95% CI 1.89–5.17). All SNP associations remained significant after adjustment for sex and comorbidities. The SNPs on chromosome 17 were in linkage disequilibrium. These findings revealed that gene polymorphisms located in chromosomes 1 and 17 might influence susceptibility to development of severe pneumonia in A/H1N1 infection. Two of these SNPs are mapped within genes (FCGR2A, C1QBP) involved in the handling of immune complexes and complement activation, respectively, suggesting that these genes may confer risk due to increased activation of host immunity.
The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/μL SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates (n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva (n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.
Wenchang chickens, a native breed in the Hainan province of China, are famous for their meat quality and adaptability to tropical conditions. For effective management and conservation, in the present study, we systematically investigated the characteristics of genetic variations and runs of homozygosity (ROH) along the genome using re-sequenced whole-genome sequencing data from 235 Wenchang chickens. A total of 16,511,769 single nucleotide polymorphisms (SNPs) and 53,506 ROH segments were identified in all individuals, and the ROH of Wenchang chicken were mainly composed of short segments (0–1 megabases (Mb)). On average, 5.664% of the genome was located in ROH segments across the Wenchang chicken samples. According to several parameters, the genetic diversity of the Wenchang chicken was relatively high. The average inbreeding coefficient of Wenchang chickens based on FHOM, FGRM, and FROH was 0.060 ± 0.014, 0.561 ± 0.020, and 0.0566 ± 0.01, respectively. A total of 19 ROH islands containing 393 genes were detected on 9 different autosomes. Some of these genes were putatively associated with growth performance (AMY1a), stress resistance (THEMIS2, PIK3C2B), meat traits (MBTPS1, DLK1, and EPS8L2), and fat deposition (LANCL2, PPARγ). These findings provide a better understanding of the degree of inbreeding in Wenchang chickens and the hereditary basis of the characteristics shaped under selection. These results are valuable for the future breeding, conservation, and utilization of Wenchang and other chicken breeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.