Abstract-This work introduces the use of compressed sensing (CS) algorithms for data compression in wireless sensors to address the energy and telemetry bandwidth constraints common to wireless sensor nodes. Circuit models of both analog and digital implementations of the CS system are presented that enable analysis of the power/performance costs associated with the design space for any potential CS application, including analog-to-information converters (AIC). Results of the analysis show that a digital implementation is significantly more energy-efficient for the wireless sensor space where signals require high gain and medium to high resolutions. The resulting circuit architecture is implemented in a 90 nm CMOS process. Measured power results correlate well with the circuit models, and the test system demonstrates continuous, on-the-fly data processing, resulting in more than an order of magnitude compression for electroencephalography (EEG) signals while consuming only 1.9 W at 0.6 V for sub-20 kS/s sampling rates. The design and measurement of the proposed architecture is presented in the context of medical sensors, however the tools and insights are generally applicable to any sparse data acquisition.
Chondrogenesis and integrative repair in engineered cartilage improved with time and depended on adjacent tissue architecture, composition, and transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.