Increased focus on kinetic signatures in biology, coupled with the lack of simple tools for chemical dynamics characterization, lead us to develop an efficient method for mechanism identification. A small thermal modulation is used to reveal chemical dynamics, which makes the technique compatible with in cellulo imaging. Then, the detection of concentration oscillations in an appropriate frequency range followed by a judicious analytical treatment of the data is sufficient to determine the number of chemical characteristic times, the reaction mechanism, and the full set of associated rate constants and enthalpies of reaction. To illustrate the scope of the method, dimeric protein folding is chosen as a biologically relevant example of nonlinear mechanism with one or two characteristic times.
We study theoretically the capillary-gravity waves created at the water-air interface by a small object during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance corresponding to the transient wave pattern and show that it is nonzero even if the involved velocity ͑the final one in the accelerated case, the initial one in the decelerated case͒ is smaller than the minimum phase velocity c min =23 cm s −1 . These results might be important for a better understanding of the propulsion of water-walking insects where accelerated and decelerated motions frequently occur.
We investigate two destabilization mechanisms for elastic polymer films and put them into a general framework: first, instabilities due to in-plane stress and second due to an externally applied electric field normal to the film's free surface. As shown recently, polymer films are often stressed due to out-of-equilibrium fabrication processes as e.g. spin coating. Via an Asaro-Tiller-Grinfeld mechanism as known from solids, the system can decrease its energy by undulating its surface by surface diffusion of polymers and thereby relaxing stresses. On the other hand, application of an electric field is widely used experimentally to structure thin films: when the electric Maxwell surface stress overcomes surface tension and elastic restoring forces, the system undulates with a wavelength determined by the film thickness. We develop a theory taking into account both mechanisms simultaneously and discuss their interplay and the effects of the boundary conditions both at the substrate and the free surface.
We study a generalized Thomson problem that appears in several condensed matter settings: identical point-charge particles can penetrate inside a homogeneously charged sphere, with global electro-neutrality. The emphasis is on scaling laws at large Coulombic couplings, and deviations from mean-field behaviour, by a combination of Monte Carlo simulations and an analytical treatment within a quasi-localized charge approximation, which provides reliable predictions. We also uncover a local overcharging phenomenon driven by ionic correlations alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.