Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate. Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H 2 ) 10 5−6 cm −3 ) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO + (4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0.3 −0.5 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H 2 ) ≥ 10 5−6 cm −3 ) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1.3 kpc starburst (SB) ring. Most of the emission in HCO + , HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20 +6 −10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (M mol ∼ 2.7 +0.9 −1.2 × 10 7 M ) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM/dt ∼ 63 +21 −37 M yr −1 , is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk.
Aims. Our goal is to study gas properties in large-scale molecular outflows and winds from active galactic nuclei (AGNs) and starburst galaxies. Methods. We obtained high-resolution (1. 55 × 1. 28) observations of HCN, HCO + , HNC 1-0 and HC 3 N 10-9 of the ultraluminous galaxy (ULIRG) Mrk 231 with the IRAM Plateau de Bure Interferometer. Results. We detect luminous emission from HCN, HCO + and HNC 1-0 in the QSO ULIRG Mrk 231. All three lines show broad line wings -which are particularly prominent for HCN. Velocities are found to be similar (≈±750 km s −1 ) to those found for CO 1-0. This is the first time bright HCN, HCO + and HNC emission has been detected in a large-scale galactic outflow. We find that both the blueand red-shifted line wings are spatially extended by at least 0. 75 (>700 pc) in a north-south direction. The line wings are brighter (relative to the line center intensity) in HCN than in CO 1-0 and line ratios suggest that the molecular outflow consists of dense (n > 10 4 cm −3 ) and clumpy gas with a high HCN abundance X(HCN) > 10 −8 . These properties are consistent with the molecular gas being compressed and fragmented by shocks in the outflow. Alternatively, HCN is instead pumped by mid-IR continuum, but we propose that this effect is not strong for the spatially extended outflowing gas. In addition, we find that the rotation of the main disk, in east-west direction, is also evident in the HCN, HCO + and HNC line emission. An unexpectedly bright HC 3 N 10-9 line is detected inside the central 400 pc of Mrk 231. This HC 3 N emission may emerge from a shielded, dust-enshrouded region within the inner 40-50 pc where the gas is heated to high temperatures (200-300 K) by the AGN.
Aims. We present a detailed analysis of Atacama Large Millimeter/submillimeter Array (ALMA) Bands 7 and 9 data of CO, HCO + , HCN, and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ∼200 pc circumnuclear disc (CND) and the ∼1.3 kpc starburst ring (SB ring) of NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim to determine the physical characteristics of the dense gas present in the CND, and to establish whether the different line intensity ratios we find within the CND, as well as between the CND and the SB ring, are due to excitation effects (gas density and temperature differences) or to a different chemistry. Methods. We estimate the column densities of each species in local thermodynamic equilibrium (LTE). We then compute large one-dimensional, non-LTE radiative transfer grids (using RADEX) by using only the CO transitions first, and then all the available molecules to constrain the densities, temperatures, and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas. Results. We find that, in general, the gas in the CND is very dense (>10 5 cm −3 ) and hot (T > 150 K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO + , CO/HCN, and CO/CS column density ratios. The RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components. Conclusions. The LTE, RADEX, and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND. A higher number of molecular transitions at the ALMA resolution is necessary to determine quantitatively the physical and chemical characteristics of these components.
Aims. We investigate the molecular gas properties of a sample of 23 galaxies in order to find and test chemical signatures of galaxy evolution and to compare them to IR evolutionary tracers. Methods. Observation at 3 mm wavelengths were obtained with the EMIR broadband receiver, mounted on the IRAM 30 m telescope on Pico Veleta, Spain. We compare the emission of the main molecular species with existing models of chemical evolution by means of line intensity ratios diagrams and principal component analysis. Results. We detect molecular emission in 19 galaxies in two 8 GHz-wide bands centred at 88 and 112 GHz. The main detected molecules are CO, 13 CO, HCN, HNC, HCO + , CN, and C 2 H. We also detect HC 3 N J = 10-9 in the galaxies IRAS 17208, IC 860, NGC 4418, NGC 7771, and NGC 1068. The only HC 3 N detections are in objects with HCO + /HCN < 1. Galaxies with the highest HC 3 N/HCN ratios have warm IRAS colours (60/100 μm > 0.8). The brightest HC 3 N emission is found in IC 860, where we also detect the molecule in its vibrationally excited state. We find low HNC/HCN line ratios (<0.5), that cannot be explained by existing PDR or XDR chemical models. The intensities of HCO+ and HNC appear anti-correlated. No correlation is found between the HNC/HCN line ratio and dust temperature. All HNC-bright objects are either luminous IR galaxies (LIRG) or Seyferts. Galaxies with bright polycyclic aromatic hydrocarbons (PAH) emission show low HNC/HCO + ratios. The CO/ 13 CO ratio is positively correlated with the dust temperature and is generally higher than in our galaxy. The emission of CN and C 18 O is correlated. Conclusions. Bright HC 3 N emission in HCO + -faint objects may imply that these are not dominated by X-ray chemistry. Thus the HCN/HCO + line ratio is not, by itself, a reliable tracer of XDRs. Bright HC 3 N and faint HCO + could be signatures of embedded starformation, instead of AGN activity. Mechanical heating caused by supernova explosions may be responsible for the low HNC/HCN and high HCO + /HCN ratios in some starbursts. We cannot exclude, however, that the discussed trends are largely caused by optical depth effects or excitation. Chemical models alone cannot explain all properties of the observed molecular emission. Better constraints to the gas spacial distribution and excitation are needed to distinguish abundance and excitation effects.
We present 450 and 850 μm submillimeter continuum observations of the IC 5146 star-forming region taken as part of the James Clerk Maxwell Telescope Gould Belt Survey. We investigate the location of bright submillimeter (clumped) emission with the larger-scale molecular cloud through comparison with extinction maps, and find that these denser structures correlate with higher cloud column density. Ninety-six individual submillimeter clumps are identified using FellWalker,and their physical properties are examined. These clumps are found to be relatively massive, ranging from 0.5 M to 116 M with a mean mass of 8 M and a median mass of 3.7 M . A stability analysis for the clumps suggests that the majority are (thermally) Jeans stable, withWe further compare the locations of known protostars with the observed submillimeter emission, finding that younger protostars, i.e., Class 0 and I sources, are strongly correlated with submillimeter peaks and that the clumps with protostars are among the most Jeans unstable. Finally, we contrast the evolutionary conditions in the two major star-forming regions within IC 5146: the young cluster associated with the Cocoon Nebula and the more distributed star formation associated with the Northern Streamer filaments. The Cocoon Nebula appears to have converted a higher fraction of its mass into dense clumps and protostars, the clumps are more likely to be Jeans unstable, and a larger fraction of these remaining clumps contain embedded protostars. The Northern Streamer, however, has a larger number of clumps in total and a larger fraction of the known protostars are still embedded within these clumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.