Previous work in our laboratory suggested that DNA topology could be implicated in the regulation of the division gene ftsZ. To settle this question, we have selected and characterized mutants in the gyrB gene able to phenotypically suppress the defects of the ftsZ84 mutation. No strict correlation was found between the degree of plasmid DNA relaxation and the level of suppression of the thermosensitivity of the ftsZ84 strain. Interestingly, the class of mutants that shows maximal suppression is substantially unaffected in DNA topology. In addition, the amount of ftsZ-specific mRNA in this class of mutants is comparable to that present in the ftsZ84 strain. These results hint that the ability of these gyrB mutants to correct the effects of the ftsZ84 mutation is largely unrelated to the function of the GyrB (as a part of DNA gyrase) in the control of DNA superhelicity and suggest hitherto unsuspected interaction between the ftsZ and gyrB gene products.
In children with genetic syndromes, short stature is frequently a characteristic feature that, when associated with other specific manifestations, significantly aids in clinical diagnosis. In this report, an atypical case of Noonan syndrome (NS) in a 5.5-year-old child with mesomelic short stature is described. Genetic tests revealed two different mutations in this child. As expected in an NS case, a mutation in PTPN11 gene related to the RAS/MAPK signal transduction pathway was identified. Moreover, a mutation in the SHOX gene that was able to cause disproportionate short stature was detected. A clinical picture of NS with mesomelic short stature makes the diagnosis even more difficult as haploinsufficiency and complete loss of function of SHOX gene are associated with the typical differentiation and proliferation of chondrocytes, leading to mesomelic appearance. This case exemplifies the difficulties that can be encountered in achieving proper diagnoses for children with syndromic diseases and highlights the role of genetic tests in identifying final diagnoses in these patients
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.