1 This article will form part of a virtual special issue on advanced neutron scattering instrumentation, marking the 50th anniversary of the journal.QUOKKA is a 40 m pinhole small-angle neutron scattering instrument in routine user operation at the OPAL research reactor at the Australian Nuclear Science and Technology Organisation. Operating with a neutron velocity selector enabling variable wavelength, QUOKKA has an adjustable collimation system providing source-sample distances of up to 20 m. Following the largearea sample position, a two-dimensional 1 m 2 position-sensitive detector measures neutrons scattered from the sample over a secondary flight path of up to 20 m. Also offering incident beam polarization and analysis capability as well as lens focusing optics, QUOKKA has been designed as a general purpose SANS instrument to conduct research across a broad range of scientific disciplines, from structural biology to magnetism. As it has recently generated its first 100 publications through serving the needs of the domestic and international user communities, it is timely to detail a description of its asbuilt design, performance and operation as well as its scientific highlights. Scientific examples presented here reflect the Australian context, as do the industrial applications, many combined with innovative and unique sample environments. research papers J. Appl. Cryst. (2018). 51, 294-314 Kathleen Wood et al. QUOKKA 295 Figure 1 QUOKKA instrument layout. research papers J. Appl. Cryst. (2018). 51, 294-314 Kathleen Wood et al. QUOKKA 297 Figure 3(a) Attenuator wheel. (b) Automatic aperture changer. (c) Sample environment area, showing the extendable bellows on the left and the 20position sample changer on the right. Downstream of the sample changer, the entrance to the detector tank is visible. (d) Beamstop mechanism, with the six beamstops all in the 'in beam' position.research papers J. Appl. Cryst. (2018). 51, 294-314 Kathleen Wood et al. QUOKKA 299 research papers J. Appl. Cryst. (2018). 51, 294-314 Kathleen Wood et al. QUOKKA 301 research papers J. Appl. Cryst. (2018). 51, 294-314 Kathleen Wood et al. QUOKKA 313
BILBY is a recently constructed and commissioned time-of-flight small-angle neutron scattering instrument, operated by the Australian Centre for Neutron Scattering at the Australian Nuclear Science and Technology Organisation (ANSTO). BILBY provides a wide accessible q range (q ' 1.0 Â 10 À3 Å À1 to $1.8 Å À1 ) and variable wavelength resolution (Á/ ' 3-30%) to complement the other small-angle and ultra-small-angle neutron scattering capabilities available at ANSTO. Since its construction, BILBY has been used to study samples from a wide range of scientific disciplines, including biology, chemistry, physics and materials science. This article describes the BILBY design and components, and shows data collected from a number of reference samples.
The double‐crystal ultra‐small‐angle neutron scattering (USANS) diffractometer KOOKABURRA at ANSTO was made available for user experiments in 2014. KOOKABURRA allows the characterization of microstructures covering length scales in the range of 0.1–10 µm. Use of the first‐ and second‐order reflections coming off a doubly curved highly oriented mosaic pyrolytic graphite premonochromator at a fixed Bragg angle, in conjunction with two interchangeable pairs of Si(111) and Si(311) quintuple‐reflection channel‐cut crystals, permits operation of the instrument at two individual wavelengths, 4.74 and 2.37 Å. This unique feature among reactor‐based USANS instruments allows optimal accommodation of a broad range of samples, both weakly and strongly scattering, in one sample setup. The versatility and capabilities of KOOKABURRA have already resulted in a number of research papers, clearly demonstrating that this instrument has a major impact in the field of large‐scale structure determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.