In this note we review recent progress about fluctuation relations and their applicability to free energy recovery in single molecule experiments. We underline the importance of the operational definition for the mechanical work and the non-invariance of fluctuation relations under Galilean transformations, both aspects currently amenable to experimental test. Finally we describe a generalization of the Crooks fluctuation relation useful to recover free energies of partially equilibrated states and thermodynamic branches.
Dynamical processes occurring on top of complex networks have become an exciting area of research. Quenched disorder plays a relevant role in general dynamical processes and phase transitions, but the effect of topological quenched disorder on the dynamics of complex networks has not been systematically studied so far. Here, we provide heuristic and numerical analyses of the contact process defined on some complex networks with topological disorder. We report on Griffiths phases and other rare region effects, leading rather generically to anomalously slow relaxation in generalized small-world networks. In particular, it is illustrated that Griffiths phases can emerge as the consequence of pure topological heterogeneity if the topological dimension of the network is finite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.