ABSTRACT:The Pleiades system, ORFEO system optical component (Optical and Radar Federated Earth Observation) consists of a constellation of two satellites for very High Resolution panchromatic and multispectral optical observation of the Earth. Its mission is to cover all European civilian needs (mapping, tracking floods and fires) and defence in the category of metric resolution: 0.7m Nadir. The first Pleiades satellite was launched at the end of last year. One of the key objectives of the Pleiades HR (PHR) project is to achieve a location accuracy that will allow the use of images in GIS (Geographical Information System) without geometrical model improvement by refining on ground control points. The image location without refined model was specified with the precision of the most commonly used tool ie the civil GPS. So the location accuracy has been specified at less than 12m for 90% of the images on a nominal satellite configuration. Very special care has been taken all along the PHR project realization to achieve this very good location accuracy. The final touch is given during the in-orbit commissioning phase which lasts until June 2012. The geometric quality implies to tune the parameters involved in the geolocation model (geometric calibration): besides attitude and orbit restitution tuning (not considered here), it consists in estimating the biases between the instrument orientation and the AOCS reference frame, and also the sight line of each detector in the focal plane. This is called static geometrical model. The analysis of dynamic perturbations outside of the model are the second most important image quality objective of in-flight commissioning, not described in this paper. Finally "image quality assessment" consists in evaluating the image quality obtained in the final products. For geolocation model, it is quantified by the absolute geolocation and the pointing accuracies, and it is a main contributor in length alteration and planimetric and altimetric accuracies. In this paper we will present both the different practices we have adopted (their advantages, limitations and complementarities) and the means we are using for the operational assessment of the location quality of PHR images. We will focus on the innovative methods and mention the improvements in progress. To conclude, we will present the very first accuracy results assessed after PHR1A launch on L1 and Sensor products.
ABSTRACT:Since SPOT1, the French national space centre (CNES) has worked on improving the geometry of Earth observation spacecrafts. The accuracy of sensor calibration is one of the main key points for any Earth observation application such as orthorectification, DEM generation or surface change detection. For the last twenty years CNES has developed two families of methods: absolute methods and relative methods. These methods are used to characterize a pushbroom acquisition along the detector line and the time line. By this way, the viewing directions are measured and the residual of the spacecraft's attitude angles (not restituted by the Attitude and Orbit Control System) is estimated. This information can complete the geometric model of all the scenes acquired by the instrument and is used in all geometric applications. This paper presents new attitude assessment methods taking advantage of the capabilities of Pléiades-HR in terms of agility and focal plane arrangement -panchromatic band and multispectral (MS) bands.
No abstract
ABSTRACT:Since the beginning of 2012, the first Pleiades-HR satellite of the program conducted by the French National Space Agency, CNES, delivers 20 km wide color scenes with a 70 cm ground sampling distance. A second satellite should be launched in 2013 which will achieve an almost world-wide coverage with a revisit interval of 24h.The assessment of the image quality and the calibration operation have been performed by CNES Image Quality team during the 6 month commissioning phase that followed the satellite launch. The geometric commissioning activities consist in improve the geometric quality of the images in order to meet very demanding specifications as localization accuracy, local coherence, dynamic stability, length alteration … This goal has been achieved through the implementation of new methods of calibration and performance assessment. Some of these methods are based on the exploitation of very specific satellite acquisitions that have been achieved thanks to the amazing agility of the Pleiades satellite. Thus, many stars acquisitions and very slow earth pictures have been processed to characterize dynamic phenomena. Similarly, "along-cross track" pairs have been exploited to improve the accuracy of the focal plane description. This paper deals with these new methods. It describes their accuracy and their operational interests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.