SNAREs (soluble NSF-attachment protein receptors) are generally acknowledged as central components of membrane fusion reactions, but their precise function has remained enigmatic. Competing hypotheses suggest roles for SNAREs in mediating the specificity of fusion, catalyzing fusion, or actually executing fusion. We generated knockout mice lacking synaptobrevin/VAMP 2, the vesicular SNARE protein responsible for synaptic vesicle fusion in forebrain synapses, to make use of the exquisite temporal resolution of electrophysiology in measuring fusion. In the absence of synaptobrevin 2, spontaneous synaptic vesicle fusion and fusion induced by hypertonic sucrose were decreased approximately 10-fold, but fast Ca2+-triggered fusion was decreased more than 100-fold. Thus, synaptobrevin 2 may function in catalyzing fusion reactions and stabilizing fusion intermediates but is not absolutely required for synaptic fusion.
Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable pool of limited size. Interestingly, vesicles in this spontaneously labeled pool were more likely to re-fuse spontaneously compared to vesicles labeled with activity. We found that blocking vesicle refilling at rest selectively depleted neurotransmitter from spontaneously fusing vesicles without significantly altering evoked transmission. Furthermore, in the absence of the vesicle SNARE protein synaptobrevin (VAMP), activity-dependent and spontaneously recycling vesicles could mix, suggesting a role for synaptobrevin in the separation of the two pools. Taken together these results suggest that spontaneously recycling vesicles and activity-dependent recycling vesicles originate from distinct pools with limited cross-talk with each other.
Hypertension in the elderly substantially contributes to cerebromicrovascular damage and promotes the development of vascular cognitive impairment. Despite the importance of the myogenic mechanism in cerebromicrovascular protection, it is not well understood how aging affects the functional adaptation of cerebral arteries to high blood pressure. Hypertension was induced in young (3 months) and aged (24 months) C57/BL6 mice by chronic infusion of angiotensin II (AngII). In young hypertensive mice, the range of cerebral blood flow autoregulation was extended to higher pressure values, and the pressure-induced tone of middle cerebral artery (MCA) was increased. In aged hypertensive mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In young mice, the mechanism of adaptation to hypertension involved upregulation of the 20-HETE (20-hydroxy-5,8,11,14-eicosatetraenoic acid)/transient receptor potential cation channel, subfamily C (TRPC6) pathway and this mechanism was impaired in aged hypertensive mice. Downstream consequences of cerebrovascular autoregulatory dysfunction in aged AngII-induced hypertensive mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal dependent cognitive function. Collectively, aging impairs autoregulatory protection in the brain of mice with AngII-induced hypertension, potentially exacerbating cerebromicrovascular injury and neuroinflammation.
Kinematically complete measurements for Coulomb dissociation of n Li into 9 Li + 2« were made at 28 MeV/nucleon. The n-n correlation function suggests a large source size for the two-neutron emission. The electromagnetic excitation spectrum of n Li has a peak, as anticipated in low-energy dipole resonance models, but a large post-breakup Coulomb acceleration of the 9 Li fragment is observed, indicating a very short lifetime of the excited state and favoring direct breakup as the dissociation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.