The high pressure behavior of optical phonons in wurtzite zinc oxide (w-ZnO) has been studied using room temperature Raman spectroscopy and ab-initio calculations based on a plane wave pseudopotential method within the density functional theory. The pressure dependence of the zonecenter phonons (E2, A1 and E1) was measured for the wurtzite structure up to the hexagonal→cubic transition near 9 GPa. Above this pressure no active mode was observed. The only negative Grüneisen parameter is that of the E low 2 mode. E1(LO) and (TO) frequencies increase with increasing pressure. The corresponding perpendicular tensor component of the Born's transverse dynamic charge e * T is experimentally found to increase under compression like e * T (P) = 2.02 + 6.4 • 10 −3 .P whereas calculations give e * T (P) = 2.09−2.5•10 −3 .P (in units of the elementary charge e, P in GPa). In both cases, the pressure variation is small, indicating a weak dependence of the bond ionicity with pressure. The pressure dependence of the optical mode energies is also compared with the prediction of a model that treats the wurtzite-to-rocksalt transition as an homogeneous shear strain. There is no evidence of anomaly in the E2 and A1 modes behavior before the phase transition.
The high-pressure local structure of zinc oxide has been studied at room temperature using combined energy-dispersive x-ray-diffraction and x-ray-absorption spectroscopy experiments. The structural parameter u and the lattice-parameter ratio c/a of the wurtzite phase is given as a function of pressure and compared with results from ab initio calculations based on a plane-wave pseudopotential method within the density-functional theory. It is shown that an accurate study of ZnO requires the explicit treatment of the d electrons of Zn as valence electrons. In good agreement with present calculations, our experimental data do not show any variation of u(P) in the low-pressure wurtzite phase between 0 and 9 GPa, pressure at which the phase transition to the rocksalt phase occurs. Moreover, no dramatic modification of the r-phase K-edge position up to similar to20 GPa is observed, indicating the absence of metallization. In view of all these results, theoretical models identifying the wurtzite-to-rocksalt transition as an homogeneous path are discussed
Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long-range order and local crystallographic structure of the recovered sample. Within uncertainty of these techniques (about 5%), all the crystallites are found to adopt the NaCl structure. From the analysis of XRD and XAS spectra, the cell volume per chemical formula unit is found to be 19.57(1) and 19.60(3) Å3, respectively, in very good agreement with the zero-pressure extrapolation of previously published high-pressure data.
The phase transition of zinc oxide from B4 (hexagonal wurtzite structure) to B1 (cubic rocksalt structure) has been studied by energy dispersive powder diffraction technique up to 11 GPa and 1273 K. Analysis of equation-of-state (PVT) data for the rocksalt phase yields precise values of the bulk modulus and its temperature derivative. The previously accepted P-T phase diagram is shown to be incorrect. It is established that the B1 phase is not recoverable. The equilibrium transition pressure of the B4-to-B1 transformation is near 6 GPa (at ambient temperature) and the dP/dT slope close to zero. These new results are confirmed by using simultaneously three other different types of experiment (imaging, ultrasonic and X-ray diffraction studies on single crystal specimens).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.