The multidrug resistance protein (MRP) has been shown to mediate ATP-dependent efflux of anticancer agents of diverse structure, such as daunorubicin (DNR), vincristine and etoposide. Thus, this protein does confer a multidrug resistant phenotype to cancer cells, similar to P-glycoprotein (Pgp). The substrate specificity of both transporter proteins is partly overlapping but is otherwise very distinct; because MRP is a multiple organic anion transporter, it transports certain glutathione conjugates and may be partly dependent on intracellular glutathione levels for the transport of anthracyclines. We have studied the transport kinetics of a series of anthracyclines in MRP and Pgp that overexpress tumor cell lines to obtain information on the substrate specificity of these proteins. The anthracyclines have modifications in the sugar moiety. The mean active efflux coefficient Ka, used to characterize the efficiency of the active efflux, was very similar for DNR and one of its 4'-deoxy-derivatives (eso-DNR) for MRP and Pgp [10-20 x 10(-10)/sec/(cells/ml)]. The permanently neutral derivatives 3'-deamino-3'-hydroxy-doxorubicin (OH-DOX) and 3'-deamino-3'-hydroxy-daunorubicin (OH-DNR) were effluxed by both proteins but had a lower Ka [2 x 10(-10) and 6 x 10(-10)/sec/(cells/ml) (OH-DOX)] and 2 x 10(-10) and 5 x 10(-10)/sec/(cells/ml) (OH-DNR)] for MRP and Pgp. Two anthracyclines, the doxorubicin derivative pirarubicin and 2'-bromo-4'-epi-DNR seemed to have a slightly higher Ka value for Pgp than for MRP. The apparent Michaelis-Menten constants (K(m)) and maximal efflux rates (VM) for the active transport were within a narrow range for both transporters, except for OH-DOX and OH-DNR, which had a lower VM in the case of MRP-mediated transport, suggesting a role of the amino group in the interaction with glutathione. Determination of the Hill coefficient (nH) of the MRP-mediated efflux gave most values close to 2, which suggests cooperativity of the transport of anthracyclines as reported before for Pgp. In conclusion, the transport kinetics of anthracyclines by MRP and Pgp are very similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.