Based on the two-phase flow patterns shown in high-speed motion pictures of the process, a general working equation is derived which relates the critical heat flux for high-pressure bulk boiling water in forced convection to the significant local flow parameters and fluid properties. The equation is applied to a representative selection of several hundred data points from the major available sources for the purpose of investigating trends in the data and to test the validity of the equation.
High-speed motion pictures (4300 pictures/sec) of boiling water flow patterns in conditions of forced flow at 1000 psia pressure in a vertical heated rectangular channel were taken over the range of mass velocities from 50 to 400 lb/sec-ft2, fluid states from bulk subcooled liquid flow to bulk boiling flow at 0.66 steam quality, and heat fluxes up to and including the critical heat flux level. Eighty critical heat flux determinations were made in the course of the experiment at 1000 psia in conditions of bulk boiling. The motion pictures provide photographic evidence of the general arrangement of the flow in conditions of bulk boiling at high pressure with heat fluxes near and including the critical heat flux level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.