The Data Fusion Model maintained by the JDL Data Fusion Group is the most widely-used method for categorizing data fusion-related functions. This paper discusses the current effort to revise and expand this model to facilitate the cost-effective development, acquisition, integration and operation of multi-sensor/multi-source systems.Data fusion involves combining information -in the broadest sense -to estimate or predict the state of some aspect of the universe. These may be represented in terms of attributive and relational states. If the job is to estimate the state of a people (or any other sentient beings), it can be useful to include consideration of informational and perceptual states in addition to the physical state.Developing cost-effective multi-source information systems requires a standard method for specifying data fusion processing and control functions, interfaces, and associated data bases. The lack of common engineering standards for data fusion systems has been a major impediment to integration and re-use of available technology. There is a general lack of standardized -or even well-documented -performance evaluation, system engineering methodologies, architecture paradigms, or multi-spectral models of targets and collection systems. In short, current developments do not lend themselves to objective evaluation, comparison or re-use. This paper reports on proposed revisions and expansions of the JDL Data Fusion model to remedy some of these deficiencies. This involves broadening the functional model and related taxonomy beyond the original military focus, and integrating the Data Fusion Tree Architecture model for system description, design and development. What is Data Fusion? What isn't?Data fusion is an increasingly important element of diverse weapon, intelligence, and commercial systems. Data fusion uses overlapping information to determine relationships Approved for public release; distribution is unlimited.
The Data Fusion Model maintained by the JDL Data Fusion Group is the most widely-used method for categorizing data fusion-related functions. This paper discusses the current effort to revise and expand this model to facilitate the cost-effective development, acquisition, integration and operation of multi-sensor/multi-source systems.Data fusion involves combining information -in the broadest sense -to estimate or predict the state of some aspect of the universe. These may be represented in terms of attributive and relational states. If the job is to estimate the state of a people (or any other sentient beings), it can be useful to include consideration of informational and perceptual states in addition to the physical state.Developing cost-effective multi-source information systems requires a standard method for specifying data fusion processing and control functions, interfaces, and associated data bases. The lack of common engineering standards for data fusion systems has been a major impediment to integration and re-use of available technology. There is a general lack of standardized -or even well-documented -performance evaluation, system engineering methodologies, architecture paradigms, or multi-spectral models of targets and collection systems. In short, current developments do not lend themselves to objective evaluation, comparison or re-use. This paper reports on proposed revisions and expansions of the JDL Data Fusion model to remedy some of these deficiencies. This involves broadening the functional model and related taxonomy beyond the original military focus, and integrating the Data Fusion Tree Architecture model for system description, design and development. What is Data Fusion? What isn't?Data fusion is an increasingly important element of diverse weapon, intelligence, and commercial systems. Data fusion uses overlapping information to determine relationships Approved for public release; distribution is unlimited.
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathenng and maintaining the data needed, and completing and reviewing this collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188) 1215 Jefferson Davis Highway. Suite 1204, Arlington, VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.