The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA) polymer filled with three concentrations of the dispersed conducting carbon black (CB) nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix Tg=-75°C. For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity ɛ=ɛ' -iɛ'' with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity ɛ'' exhibits a slight decreasewith temperature, the real part ɛ' shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.
Abstract.The temperature effecton the dielectric response of nanocomposite at low frequencies range is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate (EBA) polymer filled with three concentrations of the dispersed conducting carbon black (CB) nanoparticles. The temperature dependence of the complex permittivity has been analyzedabove the glass transition temperature of the neat polymer matrix = −75°.For all CB concentrations, the dielectric spectra follow a same trend in frequency range 100-106Hz. More interestingly, the stability of the effective complex permittivity = − with the temperature range of 10-70°C is explored. While the imaginary part of the complex permittivity exhibits a slight decreasewith temperature, the real part shows a significant reduction especially for high loading samples. The observed dielectric response may be related to the breakup of the three-dimensional structurenetwork formed by the aggregation of CB particles causing change at the interfaceEBA-CB.This interface is estimated bythe volume fraction of constrained polymer chain according to loss tangent data of dynamic mechanical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.